Gamma-Convergence for Pattern Forming Systems with Competing Interactions

Cyrill Muratov
New Jersey Institute of Technology

I will discuss a problem of energy-driven pattern formation, in which the appearance of two distinct phases caused by short-range attractive forces is frustrated by a long-range repulsive force. I will focus on the regime of strong compositional asymmetry, in which one of the phases has very small volume fraction, thus creating small “droplets” of the minority phase in a “sea” of the majority phase. I will present a setting for the study of Gamma-convergence of the governing energy functional in the regime leading to many droplets. The Gamma-limit and the properties of almost minimizers with prescribed limit density will then be established in the important physical case when the long-range repulsive force is Coulombic in two space dimensions. This is joint work with D. Goldman and S. Serfaty.

Presentation (PDF File)

Back to Nonlocal PDEs, Variational Problems and their Applications