Simultaneously Structured Models with Application to Sparse and Low-rank Matrices

Maryam Fazel
University of Washington
Electrical Engineering

The topic of recovery of a structured model given a small number of linear observations has been well-studied in recent years. Examples include recovering sparse or group-sparse vectors, low-rank matrices, and the sum of sparse and low-rank matrices, among others. In various applications in signal processing and machine learning, the model of interest is known to be structured in \emph{several} ways at the same time, for example, a matrix that is simultaneously sparse and low-rank. An important application is the sparse phase retrieval problem, where the goal is to recover a sparse signal from phaseless measurements. In machine learning, the problem comes up when combining several regularizers that each promote a certain desired structure. Often penalties (norms) that promote each individual structure are known and yield an order-wise optimal number of measurements (e.g., $\ell_1$ norm for sparsity, nuclear norm for matrix rank), so it is reasonable to minimize a combination of such norms. We show that, surprisingly, if we use multi-objective optimization with the individual norms, then we can do no better, order-wise, than an algorithm that exploits only one of the several structures. This result suggests that to fully exploit the multiple structures, we need an entirely new convex relaxation, i.e., not one that is a function of the convex relaxations used for each structure. We then specialize our results to the case of sparse and low-rank matrices. We show that a nonconvex formulation of the problem can recover the model from very few measurements, on the order of the degrees of freedom of the matrix, whereas the convex problem obtained from a combination of the $\ell_1$ and nuclear norms requires many more measurements. This proves an order-wise gap between the performance of the convex and nonconvex recovery problems in this case.

Presentation (PDF File)

Back to Structure and Randomness in System Identification and Learning