Noisy Matrix Decomposition via Convex Relaxation

Sahand Negahban
Massachusetts Institute of Technology

We analyze a class of estimators based on convex relaxation for solving high-dimensional matrix decomposition problems. The observations are noisy realizations of a linear transformation $\mathfrak{X}$ of the sum of an (approximately) low rank matrix $\Theta^\star$ with a second matrix $\Gamma^\star$ endowed with a complementary form of low-dimensional structure; this set-up includes many statistical models of interest, including factor analysis, multi-task regression, and robust covariance estimation. We derive a general theorem that bounds the Frobenius norm error for an estimate of the pair $(\Theta^\star, \Gamma^\star)$ obtained by solving a convex optimization problem that combines the nuclear norm with a general decomposable regularizer. Our results use a ``spikiness'' condition that is related to but milder than singular vector incoherence. We specialize our general result to two cases that have been studied in past work: low rank plus an entrywise sparse matrix, and low rank plus a columnwise sparse matrix. For both models, our theory yields non-asymptotic Frobenius error bounds for both deterministic and stochastic noise matrices, and applies to matrices $\Theta^\star$ that can be exactly or approximately low rank, and matrices $\Gamma^\star$ that can be exactly or approximately sparse. The sharpness of our non-asymptotic predictions is confirmed by numerical simulations.

Back to Structure and Randomness in System Identification and Learning