Eigenvalues of random non-Hermitian matrices and randomly coupled differential equations

David Renfrew
Binghamton University (SUNY)

We consider large random matrices $X$ with centered, independent entries but possibly different variances and study traces of analytic functions of $X$ and $X^*$. We then consider applications to the long time asymptotics for systems of critically coupled differential equations with random coefficients.

Back to Quantitative Linear Algebra