A Deterministic Solver for a Hybrid Quantum-Classical Transport Model in NanoMOSFETs

Jose Carrillo
Autonomous University of Barcelona

We model a nanoMOSFET by a mesoscopic, time-dependent, coupled quantum-classical system based on a sub-band decomposition and a simple scattering operator. We first compute the sub-band decomposition and electrostatic force field described by a Schrödinger-Poisson coupled system solved by a Newton-Raphson iteration using the eigenvalue/eigenfunction decomposition. The transport in the classical direction for each sub-band modeled by semiclassical Boltzmann-type equations is solved by conservative semi-lagrangian characteristic-based methods. Numerical results are shown for both the thermodynamical equilibrium and time-dependent simulations in typical nowadays nanoMOSFETs. This is a work in collaboration with N. BenAbdallah, M.J. Caceres and F. Vecil.

Presentation (PDF File)

Back to Workshop I: Computational Kinetic Transport and Hybrid Methods