Sublinear time algorithms for classification

Elad Hazan
Technion - Israel Institute of Technology

Linear classification is a fundamental problem of machine learning, in which
positive and negative examples of a concept are represented in Euclidean space
by their feature vectors, and we seek to find a hyperplane separating the two
classes of vectors.
We give the first sublinear-time algorithms for linear classification and other related problems in machine learning, including the kernelized versions of these problems. These new algorithms are based on a primal-dual approach, and use a combination of novel sampling techniques and the randomized implementation of online learning algorithms. We give lower bounds which show our running times to be nearly best possible in the unit-cost RAM model.

Joint work with Ken Clarkson and David Woodruff

Back to Workshop III: Discrete Optimization