Emerging Opportunities for Mathematics in the Microbiome

January 23 - 24, 2020

Overview

science_sunriseHR_croppedThe study of the human microbiome has seen an explosive growth in the past decade, primarily driven by advances in sequencing technologies and computational resources.

The microbial cells that colonize the human body, including intestinal and skin environments, are at least as abundant as our somatic cells and contain a much greater number of genes than the human genome. However, different people harbor radically different collections of microbes and we do not yet understand how the variation within a person over time or that between different people influences wellness, the preservation of health or the risk for or onset of disease. Experimental studies reveal possible patho-physiologies linked to abnormalities in the microbiome such as cancer, diseases of the skin, metabolism, malnutrition, food allergies, autoimmune and psychiatric disorders. Many of these have been increasing in prevalence during the past 50 years and have been linked to changes in lifestyle, diet, the use of antibiotics and the resulting decline in microbial diversity.

Current concepts about the health of the microbiome are based on ecological and systems biological concepts of diversity, abundance, resilience and resistance to perturbations. In this workshop we will explore mathematical approaches to better frame, explore and attempt to answer several fundamental questions related to the microbiome. For example, how can we quantitatively define a healthy microbiome? What inputs or environmental changes will it respond to? How do these responses change in individuals over time, as the microbiome reproduces, or as a function of its early phases (prenatal to the first three years of infancy)? Are there memory effects? Can we identify target parameters or metrics that can be optimized to say, engineer an optimal aspect of the microbiome? We will also discuss state of the art microbiome data (metagenomics, metatranscriptomics, metabolomics), comprehensive metadata (diet, medication use, life style, brain imaging, autonomic nervous system recording, etc) and possible big data analysis of the above datasets.

This workshop will include a poster session; a request for posters will be sent to registered participants in advance of the workshop.

Program Flyer PDF

Organizing Committee

Jonathan Jacobs (University of California, Los Angeles (UCLA), Department of Medicine)
Emeran Mayer (University of California, Los Angeles (UCLA), Department of Medicine)
Jeff Miller (University of California, Los Angeles (UCLA), California NanoSystems Institute)
Stanley Osher (University of California, Los Angeles (UCLA), Institute for Pure and Applied Mathematics (IPAM))
Aydogan Ozcan (University of California, Los Angeles (UCLA), Electrical & Computer Engineering)
Paul Weiss (University of California, Los Angeles (UCLA), California NanoSystems Institute)