Revisiting the equality conditions of the data processing inequality for the sandwiched Rényi divergence

Jinzhao Wang, Henrik Wilming
Institute for Theoretical Physics, ETH Zurich

Abstract

We provide a transparent, simple and unified treatment of recent results on the equality conditions for the data processing inequality (DPI) of the sandwiched quantum Rényi divergence, including the statement that equality in the data processing implies recoverability via the Petz recovery map for the full range of \(\alpha \) recently proven by Jenčová [1,2]. We also obtain a new set of equality conditions, generalising a previous result by Ledizky et al. [3].

Data processing inequality and its saturation

The Umegaki relative entropy satisfies the data processing inequality under the action of a CPTP map \(\Lambda : \)

\[
D(\Lambda(\rho) \mid \Lambda(\sigma)) \leq D(\rho \mid \sigma)
\]

When \(\Lambda = \text{Tr}_B \) w.l.o.g., the saturation of DPI is equivalent to the following algebraic equality [4]:

\[
\sigma^\beta_A \rho^\beta_{AB} = \sigma^\beta_A \rho^\beta_{AB}, \quad \forall \beta \in \mathbb{C},
\]

which is equivalent to the Petz recovery statement:

\[
\exists \mathcal{R}_{\sigma,\text{Tr}_A} such that \mathcal{R}_{\sigma,\text{Tr}_A}(\rho_A) = \rho_{AB}; \mathcal{R}_{\sigma,\text{Tr}_A}(\sigma) = \sigma_{AB}
\]

The same DPI and equality condition holds also for the Petz Rényi divergence:

\[
\tilde{D}_\alpha(\rho \mid \sigma) := \frac{1}{\alpha} \inf_{\omega} \log \langle \rho^{1/\alpha} | \Delta_{\sigma,\rho}^{\alpha} | \rho^{1/\alpha} \rangle, \quad \alpha \in (-1,0), \quad \tilde{D}_\alpha(\rho \mid \sigma) := \frac{1}{\alpha} \sup_{\omega} \log \langle \rho^{1/\alpha} | \Delta_{\sigma,\rho}^{\alpha} | \rho^{1/\alpha} \rangle, \quad \alpha \in (0,1)
\]

The optimiser can be constructed explicitly: \(\omega \propto \left(\rho^{1/\alpha} \sigma^{-\alpha} \rho^{1/\alpha} \right)^{1/\alpha} = \rho^{1/\alpha} \left(\rho^{-1} \right)^{1/\alpha} \sigma^{-\alpha} \rho^{1/\alpha} \)

Consider the DPI saturation:

\[
\tilde{D}_\alpha(\rho_A \mid \sigma_A) = \tilde{D}_\alpha(\rho_{AB} \mid \sigma_{AB}) \quad \text{and let} \quad a_\alpha^2 := \rho_{AB}^{-1} \mathbb{1} - \frac{1}{1-\alpha} \sigma_{AB}^{-\alpha}, \quad b_\alpha^2 := \rho_{AB}^{-1} \mathbb{1} - \frac{1}{1-\alpha} \sigma_{AB}^{-\alpha}
\]

The proof of the DPI can be summarised in one line, where the inequality (1) follows from Jensen’s operator inequality and inequality (2) follows from the variational definition of \(\tilde{D}_\alpha \).

\[
\langle \rho^{1/\alpha}_A | \Delta^{-\alpha}_{\sigma_A} \rho_A^{1/\alpha} | \rho^{1/\alpha}_A \rangle \leq \langle \rho^{1/\alpha}_{AB} | \Delta^{-\alpha}_{\sigma_{AB}} \rho_{AB}^{1/\alpha} | \rho^{1/\alpha}_{AB} \rangle
\]

Now set the inequalities to equalities

Equality condition (1) (Jenčová) [1,2]

\[
\mathcal{R}_{\sigma,\text{Tr}_A}(\rho_A) = \rho_{AB}; \mathcal{R}_{\sigma,\text{Tr}_A}(\sigma) = \sigma_{AB}
\]

Equality condition (2) (Leditzky, Rouzé and Datta) [3]

\[
\rho_A^{1/\alpha - 1}_A \otimes B = \rho_{AB}^{1/\alpha - 1} \otimes B
\]

Footnotes

- \(\mathcal{R}_\alpha \) denotes the geometric mean weighted by \(\lambda \) :

\[
A^{1/\lambda^\beta} B := A^{1/\lambda} (A^{-1/\lambda} B A^{-1/\lambda}) A^{1/\lambda}
\]

- The Petz recovery map:

\[
\mathcal{R}_{\sigma,\lambda}(\cdot) := \sigma^{\beta/\alpha} \lambda^{\beta/(\alpha-1)} \lambda^{\beta/(\alpha-1)} \sigma^{\beta/\alpha}
\]

References