PERFECTOID QUANTUM PHYSICS AND DIAMOND NONLOCALITY

{SHANNA DOBSON, CALIFORNIA STATE UNIVERSITY, LOS ANGELES } IPAM EQP2021

ABSTRACT

We introduce perfectoid quantum mechanics, which is quantum mechanics enriched over perfectoid spaces, diamonds, and 'etale cohomology of diamonds, in the sense of Scholze [5].

We conjecture a correspondence between geometric points in the diamond and entanglement entropy, extended to the effect of nonlocality on entanglement entropy [3], in the diamond setting. Ours is a geometrization of nonlocality in a non-Noetherian complete valuation ring.

DIAMOND

Definition [6]: Let Perfd be the category of perfectoid spaces and Perf be the subcategory of perfectoid spaces of characteristic p. A diamond is a pro-'etale sheaf ${\mathcal D}$ on Perf which can be written as the quotient X/R of a perfectoid space Xby a pro-'etale equivalence relation $R \subset X \times X$.

Figure 1: Diamond $SpdQ_p = Spa(Q_p^{cycl})/Z_p^{\times}$ [1]

PERFECTOID SPACES

Definition [1]: A perfectoid space is an adic space covered by affinoid spaces of the form $Spa(R, R^+)$ where R is a perfectoid ring.

Perfectoid Shimura variety [3]: $S_{K^p} \sim \varprojlim (S_{K^p K_p} \bigotimes_E E_p)^{ad}.$

Lubin-Tate tower at infinite level [2], [6] $\mathcal{M}_{LT,\infty} = \tilde{U}_x \times^{GL_2(\mathbb{Q}_P)_1} GL_2(\mathbb{Q}_P) \cong \mathcal{U}_z \tilde{U}_x.$

Any completion of an arithmetically profinite extension [4]; *p*-divisible formal group laws.

 $Spa(K, K^+)$ for K a perfectoid field and $K^+ \subset K$ a ring of integral elements. Zariski closed subsets of an affinoid perfectoid space.

REFERENCES

[1] Dobson, S., Efimov K-theory of Diamonds, (arxiv in preparation).

[2] Fargues, L., Geometrization of Local Correspondence, an Overview, arXiv:1602.00999 [math.NT].

[3] Caraiani, A. and Scholze, P. On the generic part of the cohomology of compact unitary Shimura varieties, Annals of Mathematics (2) 186 (2017), no. 3. [4] Narain, G. and Zhang, H-Q, Non-locality effect on the entanglement entropy in deSitter,

arXiv:1812.08667 [hep-th]. [5] Scholze, P., 'Etale Cohomology of Diamonds, arXiv:1709.07343 [math.AG], 2017.

[6] Scholze, P. and Weinstein, J. Berkeley Lectures on P-adic Geometry, Princeton University Press, 2020.

DIAMOND EXAMPLES

 $SpdQ_p = Spa(Q_p^{cycl})/Z_p^{\times}$ [6].

 $SpdQ_p$ is the coequalizer of

 $Z_p^{\times} \times Spa(Q_p^{cycl})^{\flat} \rightrightarrows Spa(Q_p^{cycl})^{\flat}.$

 \diamond product: $SpdQ_p \times_{\diamond} SpdQ_p$.

Relative Fargues-Fontaine Curve [1]:

 $\mathcal{Y}_{S,E}^{\diamond} = S \times (Spa\mathcal{O}_E)^{\diamond}.$

Moduli space of shtukas for $(\mathcal{G}, b, \{\mu_1, ..., \mu_m)\}$ fibered over $SpaQ_p \times SpaQ_p \dots \times_m SpaQ_p$ [6].

 $K^{Efimov}(\mathcal{Y}_{S,E}^{\diamond})$; Efimov K-theory of Diamonds[1]

Let C be an algebraically closed affinoid field and \mathcal{D} a diamond.

A geometric point $Spa(C) \to \mathcal{D}$ is "visible" by pulling it back through a quasi-pro-étale cover $X \to \mathcal{D}$, resulting in profinitely many copies of Spa(C) [6].

Figure 2: Geometric Point $Spa(C) \to \mathcal{D}$ [1]

Main Conjectures and Diamond Nonlocality

Quantum Physics Perfectoid Quantum Physics perfectoid space Hilbert space geometric points $Spa(C) \to \mathcal{D}$ state vectors $\diamond \operatorname{product} SpdQ_p \times_{\diamond} SpdQ_p$ ⊗ product profinitely copies of Spa(C)nonlocality Dictionary pro-'etale sheaves on Perf; profinite sets superposition tilting; perfectoid modular curves S_{K^p} wavefunction collapse entanglement six functor formalism 'etale cohomology of diamonds quantum topology non-Noetherian complete valuation ring

Conjecture 1: There exists an $(\infty, 1)$ category of diamonds with pro-'etale descent datum.

operator algebra

unitarity

Remark 1: We are interested in pro-'etale descent datum for unitarity.

Conjecture 2: Geometric points $Spa(C) \to \mathcal{D}$ in the diamond are a geometrization of entanglement entropy in a non-Noetherian complete valuation ring, taking values in $\mathcal{Y}_{S,E}^{\diamond} = S \times (Spa\mathcal{O}_E)^{\diamond}$.

Remark 2: We are using 'geometerization' in the sense of 'making Spec(E) geometric' in a GAGA correspondence for $\mathcal{Y}_{S,E}^{\diamond} = S \times (Spa\mathcal{O}_E)^{\diamond}$ [1], [6].

Remark 3: The global 'visibility' of the geometric points is in the profinitely many copies of Spa(C)Multiple 'profinitely copies' result from multiple quasi-pro-'etale covers. Perfectoid entropy measures the number of quai-pro-'etale covers.

Remark 4: We propose perfectoid entanglement entropy as a profinite form of 'up to' restricted to the pro-'etale site and to pro-'etale morphisms, which take values in

 $\mathcal{Y}_{S,E}^{\diamond} = S \times (Spa\mathcal{O}_E)^{\diamond}$.

Remark 5: The 'up to' takes the form of Scholze's six operations in the 'etale cohomology of diamonds ([5] Def. 1.7iv, Theorem 1.8).

For any map $f: Y \to X$ of small v-stacks that is compactifiable, representable in locally spatial diamonds and with dim.trg $f < \infty$, a functor

 $Rf^!: D_{'et}(X,\Lambda) \to D_{'et}(Y,\Lambda)$ that is right adjoint to Rf_1 .

Proposition 2.2 [2]. Bun_G is a stack on Perf.

pro-'etale descent datum

Conjecture 2.3 [2]: Bun_G is a "smooth diamond

Conjecture 3A: Nonlocality modularity takes the form $S_{K^p} \sim \underline{\lim} (S_{K^p K_p} \bigotimes_E E_p)^{ad}$.

Conjecture 3B: Nonlocality is geometrized in the 'etale cohomology of diamonds [5].

Remark 6: Diamond nonlocality is a perfectoid version of nonlocality that arises from the nontrivial geometry of the diamond product $SpdQ_p \times Spd_{Qp}$. Perfectoid rings are highly non-Noetherian.

Remark 7: Narain and Zhang show that strong non-locality tends to decrease the long-range entanglement in the infrared [3].

The moduli space of shtukas is a diamond fibered over $SpaQ_p \times ... \times_m SpaQ_p$ [3]. We give long-range entanglement the structure of fibering over m-fold products.

Remark 8: Galois Nonlocality as in [2] Theorem 1.3: To any perfectoid field K, associate a perfectoid field K^b of characteristic p, the tilt of C. The absolute Galois groups of K and K^b are isomorphic.