Stability of a Nonlocal Traffic Flow Model for Connected Vehicles

Kuang Huang and Qiang Du

Columbia University

Main Message

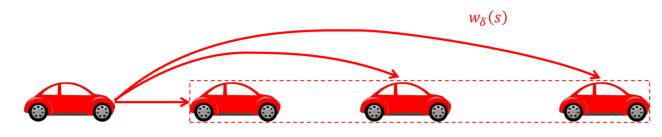
- ► Traffic flow of connected vehicles can be modeled by nonlocal conservation laws.
- ► Improper use of nonlocal information in the vehicle velocity selection could result in persistent traffic waves.
- ► To utilize the benefits of vehicle connectivity, nearby information should deserve more attention.

Modeling Traffic Flow: Non-Connected to Connected

LWR (1956)^{1,2}:

$$\partial_t \rho(x,t) + \partial_x \left(\rho(x,t) U(\rho(x,t)) \right) = 0.$$

- $\triangleright \rho(x, t)$: traffic density;
- \blacktriangleright $u(x,t) = U(\rho(x,t))$: traffic velocity;
- ► Capture shock waves (traffic jams).



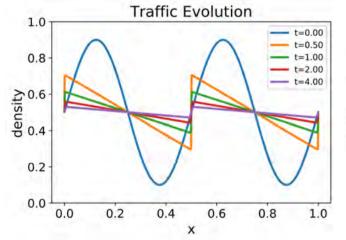
Nonlocal LWR $(2016)^3$:

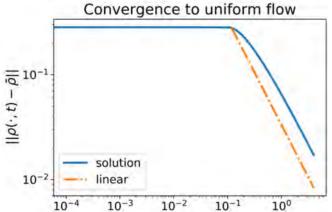
$$\partial_t \rho(x,t) + \partial_x \left(\rho(x,t) U \left(\int_0^\delta \rho(x+s,t) w_\delta(s) ds \right) \right) = 0.$$

- $ightharpoonup \int_0^\delta \rho(x+s,t) w_\delta(s) \, ds$: nonlocal traffic density;
- \triangleright $w_{\delta}(s)$ characterizes how nonlocal information is used;
- ► This is a nonlocal conservation law.

Connectivity: Benefit or Drawback

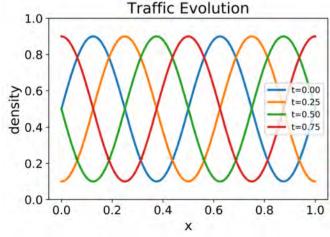
- ► Set $U(\rho) = 1 \rho$, $\rho_0(x) = 0.5 + 0.4 \sin(4\pi x)$.
- ► Local LWR:

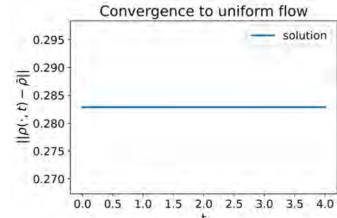




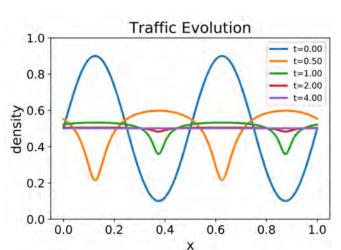
t

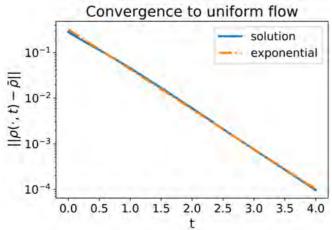
▶ Nonlocal LWR with $w_{\delta}(s) = \frac{1}{\delta}$:





▶ Nonlocal LWR with $w_{\delta}(s) = \frac{2}{\delta^2}(\delta - s)$:





Global Stability Theorem

Under the following assumptions:

- ► All vehicles drive on a ring road (periodic boundary condition);
- ▶ The velocity function is linear: $U(\rho) = 1 \rho$;
- ► The nonlocal kernel $w_{\delta}(s)$ is C^1 smooth, non-negative, **non-increasing** and **non-constant**;
- The initial density satisfies $0 < \rho_{\min} \le \rho(x,0) \le \rho_{\max} \le 1$; and suppose $\rho(x,t)$ is the solution of the nonlocal LWR model, $\bar{\rho}$ is the average density. Then there exists a constant $\lambda > 0$ that only depends on the nonlocal range δ and nonlocal kernel $w_{\delta}(s)$, such that:

$$\|\rho(\cdot,t)-\bar{\rho}\|_{\mathsf{L}^2}\leq e^{-\lambda t}\,\|\rho(\cdot,0)-\bar{\rho}\|_{\mathsf{L}^2}\,,\quad \forall t\geq 0.$$

As a corollary, the traffic density $\rho(\cdot,t)$ very quickly converges to the uniform flow $\bar{\rho}$ as $t \to \infty$.

Key Ingredients

► The model can be rewritten as:

$$\partial_t
ho(\mathbf{x},t) + \partial_{\mathbf{x}} \left(
ho(\mathbf{x},t) \left(1 -
ho(\mathbf{x},t)
ight) \right) =
u(\delta) \partial_{\mathbf{x}} \left(
ho(\mathbf{x},t) \mathcal{D}_{\mathbf{x}}^{\delta}
ho(\mathbf{x},t)
ight),$$

where \mathcal{D}_{x}^{δ} is the nonlocal derivative operator:

$$\mathcal{D}_x^\delta
ho(x,t) = rac{1}{
u(\delta)} \int_0^\delta \left[
ho(x+s,t) -
ho(x,t)
ight] w_\delta(s) \, ds,
onumber \
u(\delta) = \int_0^\delta s w_\delta(s) \, ds.$$

The nonlocal diffusion $\partial_x \left(\rho(x,t) \mathcal{D}_x^{\delta} \rho(x,t) \right)$ can dissipate all traffic waves.

► Maximum principle:

$$\rho_{\min} \leq \rho(\mathbf{x}, t) \leq \rho_{\max},$$

at any time $t \geq 0$.

▶ Define the energy functional as:

$$E(t) = \frac{1}{2} \int_0^1 (\rho(x, t) - \bar{\rho})^2 dx,$$

then:

$$\frac{dE(t)}{dt} = -\nu(\delta) \int_0^1 \rho(x,t) \partial_x \rho(x,t) \mathcal{D}_x^{\delta} \rho(x,t) dx.$$

► Nonlocal Poincare inequality:

$$\int_0^1 \partial_x \rho(x,t) \mathcal{D}_x^{\delta} \rho(x,t) dx \geq \alpha \int_0^1 (\rho(x,t) - \bar{\rho})^2 dx,$$

 α only depends on δ and $w_{\delta}(s)$.

► Nonlinear nonlocal Poincare inequality:

$$\int_0^1 \rho(x,t) \partial_x \rho(x,t) \mathcal{D}_x^{\delta} \rho(x,t) dx \ge \rho_{\min} \int_0^1 \partial_x \rho(x,t) \mathcal{D}_x^{\delta} \rho(x,t) dx.$$

► Energy estimate:

$$\frac{dE(t)}{dt} \leq -\nu(\delta)\alpha\rho_{\min}E(t), \quad \forall t \geq 0.$$

Applying Gronwall's lemma yields exponential decay of E(t).

References

- ¹ M.J.Lighthill, G.B.Whitham, On kinematic waves II: A theory of traffic flow on long, crowded roads. Proceedings of the Royal Society of London Series, 1955.
- ² P.I.Richards, Shock waves on the highway, Operations Research, 1956.
- ³ Goatin P, Scialanga S. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016

Further Information

- ▶ Paper submitted: Stability of a Nonlocal Traffic Flow Model for Connected Vehicles, with Q. Du. (https://arxiv.org/abs/2007.13915)
- ► Research supported in part by NSF DMS-2012562, and ARO MURI Grant W911NF-15-1-0562.
- ► Contact: kh2862@columbia.edu.

