

Isoperimetric Inequalities for Polar L_p Centroid Bodies

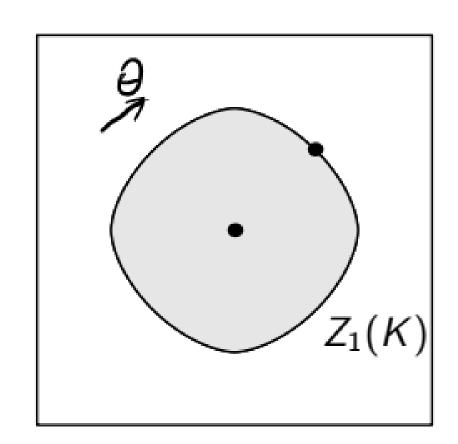
R. Adamczak, G. Paouris, P. Pivovarov, P. Simanjuntak* | pysimanjuntak@mail.missouri.edu

L_p Centroid Bodies

Centroid Bodies (Geometric Definition): Given an origin-symmetric convex body K in \mathbb{R}^n and $\theta \in S^{n-1}$, θ^{\perp} divides K into two symmetric halves. The boundary of $Z_1(K)$ is the collection of the centroids of the halves

$$K \cap \theta_{+}^{\perp} = \{ x \in K \mid \langle x, \theta \rangle \ge 0 \}. \tag{1}$$

Fundamental isoperimetric inequalities for such bodies were proved by Blaschke, Busemann, and Petty (see [Gar06]).



 L_p Centroid Bodies (Analytic Definition): Let K be a convex body, K = -K, in \mathbb{R}^n and p > 0, define $Z_p(K)$ by its support function

$$h_{Z_p(K)}(\theta) = \left(\frac{1}{|K|} \int_K |\langle x, \theta \rangle|^p \ dx\right)^{\frac{1}{p}}. \qquad (\theta \in S^{n-1})$$
 (2)

Isoperimetric Inequalities for L_p Centroid Bodies, $p \ge 1$: First established by Lutwak and Zhang [LZ97]:

Theorem. Let K be a star body. For $1 \le p < \infty$,

$$|Z_p^{\circ}(K)| \le |Z_p^{\circ}(K^*)|, \tag{3}$$

where $Z_p^{\circ}(K)$ denotes the polar of $Z_p(K)$ and K^* is the dilate of the ball in \mathbb{R}^n so that $|K| = |K^*|$. (3) is an equality iff K is an origin-symmetric ellipsoid.

Later this was extended to $Z_p(K)$ itself.

Theorem (Lutwak-Yang-Zhang [LYZ00]). With the same assumption,

$$|Z_p(K)| \ge |Z_p(K^*)|,\tag{4}$$

with equality iff K is an origin-symmetric ellipsoid.

Proofs of both theorems utilize Steiner symmetrization.

EMPIRICAL L_p CENTROID BODIES

 L_p Centroid Body (Probabilistic Approach): Let X_1, \dots, X_N be iid random vectors in \mathbb{R}^n drawn from a continuous distribution f. For $p \geq 1$, define the empirical L_p centroid body via

$$h_{Z_{p,N}(f)}(\theta) = \left(\frac{1}{N} \sum_{i=1}^{N} |\langle X_i, \theta \rangle|^p\right)^{\frac{1}{p}} \qquad (\theta \in S^{n-1})$$
 (5)

By the Law of Large Numbers, $h_{Z_{p,N}(f)}$ converges to $h_{Z_p(f)}$ almost surely (where $Z_p(f)$ is defined as in (2) by replacing $\chi_K/|K|$ with f). Alternatively,

$$Z_{p,N}(f) = N^{-\frac{1}{p}} X B_q^N \tag{6}$$

where $\frac{1}{p} + \frac{1}{q} = 1$ and $X = \begin{bmatrix} X_1 & \cdots & X_N \end{bmatrix}$. Paouris and Pivovarov [PP12] proved

$$\mathbb{E}|Z_{p,N}(f)| \ge \mathbb{E}|Z_{p,N}(f^*)| \tag{7}$$

where f^* is the symmetric decreasing rearrangement of f.

Beyond the $p \ge 1$ **Case:** The radial function of the polar empirical L_p centroid body for 0 is given by

$$\rho_{Z_{p,N}^{\diamondsuit}(f)}(\theta) = \left(\frac{1}{N} \sum_{i=1}^{N} |\langle X_i, \theta \rangle|^p\right)^{-\frac{1}{p}} \qquad (\theta \in S^{n-1})$$
 (8)

As N tends to infinity, $Z_{p,N}^{\diamondsuit}(f)$ approaches the deterministic polar L_p centroid body as defined by [YY06], which is given by

$$\rho_{Z_p^{\diamondsuit}(f)}(\theta) = \left(\int_{\mathbb{R}^n} |\langle x, \theta \rangle|^p f(x) dx \right)^{-\frac{1}{p}} \qquad (\theta \in S^{n-1}) \qquad (9)$$

Such bodies interpolate between intersection and L_p centroid bodies [HL06, Kol05]. Berck [Ber09] showed that $Z_p(f)$ is convex when $f = \chi_K$, K an origin-symmetric convex body. However $Z_{p,N}^{\diamondsuit}(f)$ is only a star body, so new tools not relying on convexity are needed. **Main Result:**

Theorem. Let f be as above and 0 . Then

$$\mathbb{E}|Z_{p,N}^{\diamondsuit}(f)| \le \mathbb{E}|Z_{p,N}^{\diamondsuit}(f^*)|. \tag{10}$$

Consequently as $N \to \infty$

$$|Z_p^{\diamondsuit}(f)| \le |Z_p^{\diamondsuit}(f^*)| \tag{11}$$

SKETCH OF PROOF

A Volume Formula: The main technical ingredient is a volume formula by Nayar and Tkocz [NT20]. A random variable W is α -stable with density g_{α} for $0 < \alpha < 1$ if

$$\mathbb{E}e^{-tW} = \mathbb{E}e^{-t^{\alpha}} \tag{12}$$

Theorem. Let 0 and <math>X be an $n \times N$ matrix with columns X_1, \dots, X_N . Let W_1, \dots, W_N be iid random variables with density $t^{-1/2}g_{p/2}(t)$. Then

A Rearrangement Inequality: Call $F:(\mathbb{R}^n)^N \to \mathbb{R}$ Steiner concave if for any fixed $\theta \in \mathbb{R}^n$ and $(y_1, \dots, y_N) \in (\theta^{\perp})^N$ the function

$$F_Y(t_1, \dots, t_N) = F(y_1 + t_1 \theta, \dots, y_N + t_N \theta)$$
 (14)

is even and quasi-concave (i.e. its level sets are convex).

Theorem (Brascamp-Lieb-Luttinger [Chr84]). *If* $F : (\mathbb{R}^n)^N \to \mathbb{R}$ *is Steiner concave and* $f_i : \mathbb{R}^n \to \mathbb{R}$, $1 \le 1 \le N$, *is of class* $L^1(\mathbb{R}^n)$, *then*

$$\int_{(\mathbb{R}^n)^N} F(\overline{x}) \prod_{i=1}^N f_i(x_i) d\overline{x} \le \int_{(\mathbb{R}^n)^N} F(\overline{x}) \prod_{i=1}^N f_i^*(x_i) d\overline{x}$$
 (15)

Key Observation: Reinterpreting (6) and combining with (13) gives

$$|Z_{p,N}^{\diamondsuit}(f)| = c_{N,n,p} \mathbb{E}_W \prod_{i=1}^{N} W_i^{\frac{1}{2}} \left| X(\sqrt{W}B_2^N) \right|^{-1}$$
 (16)

where $\sqrt{W} = \operatorname{diag}(W_1, \cdots, W_N)$.

Complete with the following theorem from [PP12]

Theorem. Let X be as above and C a convex body in \mathbb{R}^N . If $F: (\mathbb{R}^n)^N \to R$ is defined by

$$F(X_1, \cdots, X_N) = |XC|^{-1},$$
 (17)

(10) then F is Steiner concave.

Alternative Approach: Use a more general stochastic inequality: from [CEFPP15]

[Ber09] G. Berck, Convexity of L_p intersection bodies. Adv. Math. 222 (2009), no. 3, 920-936

[CEFPP15] D. Cordero-Erasquin, M. Fradelizi, G. Paouris, P. Pivovarov, Volume of the polar of random sets and shadow systems. Math. Ann. 362 (2015), no. 3, 1305-1325

[Chr84] M. Christ, Estimates for the k-plane transform. Indiana Univ. Math. J. 33 (1984), no. 6, 891-910.

[Gar06] R. J. Gardner, Geometric Tomography (Second Ed.. Cambridge University Press, New York (2006).

[HL06] C. Haberl and M. Ludwig, A characterization of L_p intersection bodies. Int. Math. Res. Not. (2006), 1-24.

[LYZ00] E. Lutwak, D. Yang, G. Zhang, L_p affine isoperimetric inequalities. J. Diff. Geom. 56 (2000), no. 1, 111-132.

[LZ97] E. Lutwak and G. Zhang, *Blaschke-Santaló inequalities*. J. Diff. Geom. 47 (1997), no. 1, 1-16.[Kol05] A. Koldobsky, *Fourier analysis in convex geometry*. American Mathematical Society, Providence, RI (2005).

[NT20] P. Nayar and T. Tkocz, *On a convexity property of sections of the cross-polytope*. Proc. Am. Math. Soc. 148 (2020), no. 3, 1271-1278.

[[]Pao06] G. Paouris, Concentration of mass on convex bodies. GAFA 16 (2006), no. 5, 1021-1049.

[[]PP12] G. Paouris and P. Pivovarov, *A probabilistic take on isoperimetric- type inequalities*. Adv. Math. 230 (2012), no. 3, 1402-1422.

[[]PP17] G. Paouris and P. Pivovarov, *Randomized isoperimetric inequalities*. In Convexity and concentration, volume 161 of IMA Vol. Math. Appl., pages 391–425. Springer, New York, 2017.

[[]YY06] V. Yaskin and M. Yaskina, *Centroid bodies and comparison of volumes*. Ind. Math. J. 55 (2006), no. 3, 1175-1194