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1. Executive Summary 
This document serves as a summary of the research activities and outcomes of the Long 
Program, “Mathematical and Computational Challenges in Quantum Computing” which 
was held at the Institute of Pure and Applied Mathematics (IPAM) from September 11 to 
December 15, 2023. This program embraced the grand challenge in quantum information 
science: harness the weirdness of quantum mechanics to yield a computational 
advantage. Shor’s algorithm, featured by the Green Family Lecture Series delivered by 
Professor Peter Shor during the program, provides an early and (still) striking example of 
such an advantage. Practical applications of quantum computers also face several major 
challenges: they can require high ingenuity in preparing, manipulating and reading 
classical data, and existing quantum devices are prone to high error rates. This program 
employed deep tools from mathematics, inspired by physical realities, to find algorithmic 
solutions to challenging applications.  

This document surveys key topics identified by program participants: 

Input Model and Explicit State Preparation: Building an input model and preparing 
quantum state are prior steps for quantum scientific computing. The input model 
essentially builds the Hamiltonian of interest on a quantum computer and allows further 
oracle access. Along with the rapid development of quantum algorithms for scientific 
computing, it has become increasingly important to understand the end-to-end complexity 
and a clear estimate for the input model cost will be crucial. It is also an important task to 
develop input models with optimal complexity. Participants have made progress with 
respect to the input model for partial differential equations, quantum chemistry and 
random graphs as well as hardware-aware input model. 

Quantum Scientific Computation: The rapid progress in quantum computing provides 
the scientific computing community with unprecedented opportunities. From a 
mathematical perspective, quantum algorithms perform a sequence of matrix-vector 
multiplications using only unitary matrices. However, many scientific computing tasks are 
not formulated as multiplications of unitary matrices. Over the past few decades, with 
particularly exciting progress in recent years, ingenious methods have been devised to 
adapt non-unitary operations and express them in terms of unitary operations. 
Participants have achieved significant progress along the lines of unbounded Hamiltonian 
simulation, linear differential equation solvers, and early fault tolerant quantum 
algorithms. 

Quantum Optimization: Optimization drives ubiquitous applications across engineering 
and the sciences. This program sparked new collaborations between applied 
mathematicians, physicists, and computer scientists towards developing new kinds of 
classical and quantum algorithms for fundamental classical and quantum optimization 
problems such as linear regression, nonconvex optimization, boolean constraint 
satisfaction, and approximating many-body local Hamiltonians. The algorithms that 
participants developed or have envisioned break new ground by: delivering polynomial 
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and superpolynomial quantum advantages, leveraging quantum mechanics in novel 
ways, or generalizing classical optimization techniques for physical problems.    

Quantum Learning: Machine learning (ML) has had a transformative impact across 
nearly every area of science and technology. There are two main ways that machine 
learning is used in the field of quantum computing. First, classical machine learning 
models are being used to learn quantum many-body systems. Second, learning using 
quantum resources has established the field of quantum machine learning. Variational 
quantum circuits have been proposed as models for quantum learning. Using quantum 
computers to achieve a quantum advantage in machine learning is a relatively new idea 
and thus has many open problems. The best way to optimize a parameterized circuit, and 
how to choose these quantum circuits is still an open problem and debated issue. 

Open Quantum Systems: Recently, the importance of open quantum systems has 
emerged in experimental, theoretical and algorithmic research. They also play an 
important role in understanding noise, in particular in near-term quantum devices. 
Mathematical tools, numerical methods and experimental work have led  to fundamental 
insights in ground state preparation, simulation and algorithms, and the connection to 
error correction. 

Noisy Intermediate-Scale Quantum (NISQ) Computation: There is considerable 
interest in the capabilities of present- and near-term quantum devices where fault-tolerant 
quantum computation is not possible. In recent years significant progress has been made 
in developing quantum hardware, software, and algorithms to enable quantum 
computations that challenge classical devices. Quantum error mitigation provides a 
mechanism to reduce the effect of noise in the quantum processor, generally at the cost 
of additional circuit repetitions and/or classical post-processing. 

Fault-tolerant Quantum Computation: Fault-tolerant quantum computation is required 
for a large majority of currently proposed quantum algorithms and will likely be necessary 
to achieve meaningful quantum advantage. Strategies for quantum error correction (QEC) 
encode logical qubits across many noisy qubits, but such schemes require hardware that 
achieves a certain fidelity threshold. Although full fault tolerance is currently out of reach, 
progress is being made in the design of good quantum codes and their implementation. 
There is increasing interest in work for the early fault-tolerant quantum computing 
(EFTQC) regime, where logical qubits and operations are available but only at a limited 
scale. Additional work estimating the total cost of running algorithms in a fault-tolerant 
setting will play an important role in directing further error correction and algorithmic work.  

2. Introduction 
Quantum information science is a multi-disciplinary challenge with broad applications to 
computing, communication, security, and quantum sensing tasks. According to Scott 
Aaronson, quantum computation must pass the very high bar of providing provable 
quantum advantages with a relatively small number of qubits on a noisy device in order 
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to demonstrate its near-term usefulness. The rapid advancement in quantum computing 
presents unparalleled opportunities for the scientific community. However, fully 
harnessing the potential of quantum computers to achieve quantum advantage over 
classical computers is a significant challenge. While it may be tempting to think that 
exponential quantum speedups can be achieved by using n qubits to encode 2n bits of 
classical information, the reality is more subtle, since the quantum algorithm must interact 
with classical processing systems. Therefore, we need to not only design efficient 
quantum algorithms using a relatively small number of quantum gates, but also 
thoughtfully consider input-output models, and the specific requirements of quantum 
algorithms.  

We may dissect the overall quantum cost into three main categories: input, output, and 
running costs. A quantum algorithm starts with a standard state, which is then 
transformed by a unitary matrix to prepare the input state. The input cost is the quantum 
gate complexity required to implement this unitary matrix. The output cost relates to the 
quantum measurement process, which is performed on one or several qubits often at the 
end of the algorithm. The output cost is given by the number of repetitions necessary to 
reach a target precision. The running cost refers to the expense incurred in executing the 
quantum algorithm a single time. A comprehensive "end-to-end" analysis of quantum 
advantage requires considering input, output, and running costs.  

Assessing the performance of quantum algorithms and identifying potential quantum 
advantages raises considerable challenges. Rigorous proof of asymptotic quantum 
advantage over the best-possible classical algorithm, ideally superpolynomial, is a gold 
standard; however, such proofs are difficult to establish and may be currently beyond 
reach. An alternative is to compare against the best-known classical algorithm; however, 
such quantum advantages may vanish under classical algorithmic advances. Empirical 
assessment of quantum algorithms is a natural strategy in absence of rigorous proofs; 
however, this may suggest advantages that are not sustainable as problem instances 
grow in size or complexity.  Moreover, as quantum information science (QIS) is an 
exemplar interdisciplinary field, methodologies or metrics for performance assessment 
may be highly domain sensitive. For example, quantum complexity theory seeks to 
provide insight into the power and limitations of quantum computing from a worst-case 
asymptotic perspective; however, such a notion may not be appropriate for computing 
quantities to a practical precision, such as chemical accuracy, for a specific molecule.  

Research in quantum computation has to reflect and embrace the challenges imposed by 
the limitations of existing quantum devices. For example, fault tolerance and quantum 
error correction are omnipresent in quantum information theory and quantum 
computation. Over the past fifty years, classical computer gates have observed significant 
improvements resulting in miniscule errors per gate. In contrast, physical quantum gates 
are subject to broader sources of error stemming from their quantum-mechanical nature. 
Errors present a critical challenge for Noisy Intermediate-Scale Quantum (NISQ) devices. 
However, just as there exist classical error correction codes, which, for example, enable 
us to smoothly communicate over cell phones, there are quantum analogues called 
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quantum error-correction (QEC) codes that are known to be able to correct errors in 
quantum computation. Developing and engineering robust and scalable QEC is a 
paramount challenge for quantum computing. 

Nearly optimal QEC rests on deep mathematical insights. Quantum computation also 
draws inspiration from interactions with other fields. For example, recent theoretical 
findings suggest that quantum field theory and gravity rely on surprising properties of 
quantum entanglement and codes. Fundamental problems from condensed matter theory 
and quantum chemistry present challenges that quantum computation seems well suited 
to address. Quantum computation has had a profound impact on computational 
complexity theory, with many previously studied models of computation exhibiting 
unexpected connections to quantum mechanics. A particularly striking example enabled 
a recent breakthrough disproving a longstanding conjecture in operator algebras 
(Connes’ embedding problem) through non-local games and entanglement. 

3. Input Model and Explicit State Preparation 
Introduction: The input model serves as the vital link between quantum hardware, 
quantum error correction, and quantum algorithms, playing a foundational role in the initial 
stages of scientific computing by facilitating the creation of a Hamiltonian on a quantum 
computer. Quantum algorithms are typically formulated with the assumption of access to 
the input model, which comprises a SELECT oracle and a PREPARE oracle. The 
SELECT oracle encodes information about the location of nonzero elements in the 
Hamiltonian, while the PREPARE oracle precisely provides the values of these nonzero 
elements. The SELECT oracle's characteristics often depend on the nature of the 
problem, such as sparse matrices or quantum many-body Hamiltonians. Details about 
the problem are then handled by the PREPARE oracle. The construction of the input 
model involves various techniques aimed at building a complex Hamiltonian from simpler 
components. These techniques include Linear Combination of Unitaries (LCU), Quantum 
Random Access Memory (QRAM), and Hamiltonian Embedding. 

Linear Combination of Unitaries (LCU): LCU methods were originally conceived to 
achieve optimal or near-optimal query complexities for Hamiltonian simulation. These 
early results paved the way for the broader class of block-encoding techniques, which 
embed and operate on a subnormalized matrix inside a unitary matrix. As the name 
suggests, LCU requires that this matrix can be rendered as a linear combination of 
unitaries for which the 1-norm of the coefficients provide the subnormalization constant. 
The Pauli basis is conceptually convenient for quantum computation, but other choices 
of unitary bases might have performance advantages. In order to realize an LCU 
embedding, a register of ancilla qubits is required with a number of qubits that is 
logarithmic in the number of terms in the LCU expansion. The block-encoded matrix is 
then accessed through PREPARE and SELECT oracles, which respectively load the 
square root of the coefficients of the LCU expansion as amplitudes in the ancilla register 
and apply the individual terms of the expansion on some target register, controlled on the 
state of the ancilla register. The product PREPARE and SELECT oracles can be 
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combined to form a product of reflection operators known as a Szegedy walk, which 
enables the powerful simulation method known as qubitization. 

One of the primary drawbacks of the LCU approach to block encoding (BE) is the fact 
that the subnormalization constant determines the cost of working with this representation 
of the matrix. For a matrix with entries of mixed sign, the fact that this is determined by a 
1-norm is especially damaging. Other challenges include the implementation of the 
SELECT and PREPARE oracles. While techniques like unary iteration facilitate the 
efficient implementation of SELECT given access to controlled versions of the constituent 
unitaries, the complexity of implementing PREPARE for an arbitrary matrix can be 
prohibitive. While unstructured matrices suffer from the cost of preparing arbitrary states 
on the ancilla register, specially structured matrices can see dramatic improvements in 
the gate complexity required for the implementation of PREPARE.  

Quantum Random Access Memory (QRAM): Numerous quantum algorithms offer 
speedup over their classical counterparts. These algorithms typically require frequent 
access to classical data, which encodes the problem instance. QRAM, if implemented, 
would facilitate the efficient storage and retrieval of classical data in quantum computing. 
To realize practical quantum benefits, it is imperative to pinpoint a viable implementation 
for this data access scheme. 

While QRAM plays a crucial role in the success of quantum algorithms, realizing its 
implementation poses significant challenges. The primary hurdle lies in ensuring fault-
tolerant quantum circuits. Achieving a high-fidelity T-gate is resource intensive, making it 
imperative to reduce the T-gate count in circuit design without compromising fidelity. 
Moreover, the effectiveness of QRAM depends on its query time aligning with the total 
runtime of the algorithm. Significant overhead in data retrieval could undermine the 
potential quantum advantage of an algorithm which uses QRAM. Recent research 
demonstrates the error resilience of QRAM. Consequently, practical QRAM 
implementations should prioritize maintaining this error resilience, aiming for a high 
success rate, and optimizing factors such as T-gate count, query duration, and qubit 
consumption. 

Hamiltonian embedding: Block encodings and QRAM are advanced quantum input 
models that require fully fault-tolerant quantum computers. Recently, a technique named 
Hamiltonian embedding has been proposed for simulating sparse Hamiltonians on near-
term quantum devices. Hamiltonian embedding simulates a desired Hamiltonian 
evolution by embedding it into the evolution of a large and structured quantum system. 
The large embedding Hamiltonian is often represented as a sum of 1- and 2-local Pauli 
operators, which allows efficient simulation on both gate-based and analog quantum 
devices. Hamiltonian embedding can be regarded as a new quantum input model of 
sparse matrices that does not require fault tolerance. With Hamiltonian embedding, it is 
possible to implement quantum algorithms for scientific computing (e.g., non-unitary 
quantum dynamics) and optimization (e.g., Quantum Hamiltonian Descent) on near-term 
realizable quantum hardware. 
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Work done at IPAM: 
1. Improved Block Encoding for general second quantized Hamiltonian: Recent strides in 
Quantum Random-Access Classical Memory (QRACM) prompt a fresh approach to block 
encoding second-quantized Hamiltonians. In this innovative framework, we adopt a novel 
encoding for creation and annihilation operators, moving beyond traditional Jordan-
Wigner and Bravyi-Kitaev transformations. This updated encoding brings about a 
consistent acceleration concerning T-gates and success probability. Notably, when 
tackling intricate problems in nuclear and particle physics, the new approach 
demonstrates a remarkable 50-fold increase in algorithmic speed for a Hamiltonian 
including a three-body interacting term. Moreover, the QRACM introduces a reduction in 
T-gate count complexity relative to the qubit number n. By synergizing these 
advancements, we present an enhanced block encoding for general second-quantized 
Hamiltonians. 
2. Block encoding for partial differential equations: The solution of partial differential 
equations (PDEs) has been proposed as a possible application of quantum computers. 
Given a finite dimensional matrix representation of the PDE, e.g. by finite difference 
approximations, block encoding is the standard input model for implementing the matrix 
on a quantum computer. However, many algorithms simply assume access to these block 
encodings without providing explicit cost estimates for the circuit. For finite difference 
approximations, the result is a large sparse matrix with regular structure. Using the 
method of linear combination of unitaries, with a family of unitaries called the clock and 
shift operators, during this program we have constructed explicit block encodings for finite 
difference representation of elliptic PDEs which commonly arise in scientific applications 
which scale independently of the number of grid points with non-trivial boundary 
conditions. This makes the cost analysis for the solution of PDEs on the quantum 
computer more precise for a broader class of problems and enables tighter analysis of 
the feasibility of quantum solvers for this class of problems. 
3. Block encoding for random graphs: Several quantum algorithms claiming exponential 
speedups assume the BE of certain sparse matrices. However, the oracle steps in the 
BE are often very non-trivial to construct in practice. Thus, quantum advantage without 
end-to-end complexity analysis remains challenging, even for well-studied problems such 
as the glued trees problem. Recent work has provided explicit constructions for the 
adjacency matrices of some simple graphs including the cycle graph (circulant matrices), 
trees, and symmetric stochastic matrices. To provide constructions of relevant problems 
where quantum algorithms have proven advantages, in this program, we’ve begun work 
on a large project for the block encoding of graphs without well-defined structure. The 
results from this work have significant implications into understanding what problem 
structures are amenable to quantum advantage, with applications to graph theory and 
quantum walks on graphs. 
4. Hamiltonian embedding: With the explicit construction of Hamiltonian embeddings of 
graph Laplacians and differential operators, we demonstrate several important quantum 
applications on near-term quantum devices (e.g., the IonQ and QuEra quantum 
computers), including quantum walk on glued trees graphs and the simulation of real-
space Schrödinger equations. 
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Outlook: Several quantum algorithms, particularly in areas like quantum machine 
learning, heavily depend on accessing quantum data instead of classical data. However, 
the anticipated quantum speedup may not materialize if the resource cost and overhead 
associated with quantum data access are substantial. Surprisingly, there is limited 
literature on frameworks intricately designed for the non-trivial storage of quantum data. 
To our knowledge, an early design known as Quantum Random-Access Quantum 
Memory (QRAQM) has been coined for the explicit purpose of storing quantum data. 
Unfortunately, the T-gate count for this scheme is currently linear, presenting a potential 
hindrance to its efficiency. We believe that there is room for improvement, and efforts can 
be directed toward enhancing the T-gate count to further optimize the performance of the 
QRAQM framework.  

4. Quantum Scientific Computing 
Introduction: The recent development of quantum algorithms has significantly advanced 
the frontier of using quantum computers for performing a wide range of scientific 
computing tasks. This includes solving numerical linear algebra problems  for very large 
matrices, such as solving linear systems, eigenvalue and singular value transformations, 
matrix function evaluation, trace estimation, topological data analysis, as well as solving 
certain high-dimensional linear and nonlinear differential equations, including for both 
quantum systems (Hamiltonian simulation) and other classical applications. This program 
has brought together leading experts across different disciplines, including experts in 
solving related tasks using classical computers that can potentially inspire the 
development of new quantum algorithms; discussed recent progress made in the 
development of quantum algorithms for scientific computation, and the advances in 
classical algorithms; paved the path towards identifying and overcoming challenging 
problems in science, engineering, and various industrial and technological applications. 

Unbounded Hamiltonian simulation: Simulation of the quantum dynamics (also called 
Hamiltonian simulation) was the original motivation for quantum computers and remains 
as one of the most basic, fundamental, and important tasks in quantum computing. 
Recent years have witnessed tremendous progress in developing and analyzing quantum 
algorithms for Hamiltonian simulation of bounded operators. However, many scientific 
and engineering problems require the efficient treatment of unbounded operators for 
infinite-dimensional Hilbert spaces, which frequently arise due to the discretization of 
differential operators. Such applications include molecular dynamics, first-quantized 
electronic structure theory, quantum differential equation solver, quantum optimization, 
and quantum machine learning. These problems bring additional challenges to quantum 
algorithms whose cost typically depends on the norm of the Hamiltonian, which can be 
infinite. For unbounded operators, even after suitable discretization, the norm of the 
Hamiltonian can be very large, and it was found that, in the worst case, discretization 
errors that arise from the spatial grid can remove the exponential speedups typically 
afforded by quantum simulation.  
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There have been recent developments dedicated to addressing this challenge, which can 
be categorized into two mainstream approaches. One approach is to consider the specific 
or average-case scenario of a particular problem, as opposed to the worst case, often 
leading to an effective Hilbert space (or manifold) of much smaller dimension. This 
includes low-energy subspace estimations, vector norm analysis, average-case analysis 
for random inputs, and observable error bounds. The other approach involves utilizing the 
interaction picture formulation that transforms the (time-independent) Hamiltonian with a 
large norm into a time-dependent Hamiltonian with a much smaller norm but is highly 
oscillatory in time. This requires that quantum algorithms have a cost independent (or 
only weakly dependent) of the oscillatory behavior. Tools from mathematical analysis, 
such as analysis for PDEs, pseudodifferential operators, and semiclassical analysis, have 
been proven to be particularly useful in advancing the provable efficiency of quantum 
algorithms involving unbounded operators. 

Linear systems and differential equations: The solution of differential equations often 
requires a large amount of classical resources to obtain accurate solutions. In many 
cases, the differential equations are represented as an ordinary differential equation 
(ODE) involving a finite dimensional matrix. Some examples where this is the case 
include numerical solution of partial differential equations (PDE) where the spatial 
components of the differential operator are discretized to form a finite dimensional matrix 
ODE. Several classical methods for time evolving ODEs have been translated into 
asymptotically efficient quantum algorithms. However, in many cases both the quantum 
and classical algorithms suffer from dependence on the matrix norm and/or condition 
number depending on the time stepping scheme of choice. Implicit methods, which 
involve solving a linear system at each time step, remain a relatively unexplored direction 
in quantum algorithms. However, these approaches offer the advantage of being able to 
take large time-steps. 

For the class of elliptic PDEs, many classical methods exist to effectively and efficiently 
precondition the linear system. This, in part, is due to the fact that with periodic boundary 
conditions the elliptic operator is diagonalizable by Fourier transform; given a block 
encoding of the matrix on a quantum computer, this step can be performed exponentially 
faster using the quantum Fourier transform. Preconditioning on a quantum computer for 
other classes of PDEs, however, still remains a relatively unexplored avenue. In 
particular, explicit block encodings, resource estimates, and success probabilities for 
implementations of the most popular classes of preconditioners (such as those that arise 
from factorization methods, sparse approximate inverses, and multilevel paradigms) 
remain largely unknown. Due to these limitations, it is difficult to assess the outlook for 
quantum advantage in the solution of generic PDEs. 

Non-Hermitian quantum dynamics: Non-Hermitian quantum dynamics simulates the 
dynamics associated with a non-Hermitian operator. This is an inherently non-unitary 
process and is a challenging task for quantum computers. A significant advancement in 
quantum algorithms over the past decade is the development of the quantum singular 
value transformation (QSVT). However, simulating non-Hermitian quantum dynamics 
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requires performing quantum eigenvalue transformations of a potentially non-normal 
matrix, and cannot be cast into the framework of singular value transformations. The 
leading approach is somewhat complex and perhaps counterintuitive. It starts by treating 
the problem as an ODE, then discretizing this ODE over time, and converting it into a 
large linear system of equations, which can be solved by quantum linear system 
algorithms (QLSA). The ODE can be solved using a traditional time-marching strategy, 
similar to that employed in standard numerical ODE solvers. However, direct 
implementation leads to an excessively high output cost due to diminishing success 
probability. Recently, a time-marching strategy that avoids this issue has been developed. 
This new time-marching strategy also achieves optimal query complexity with respect to 
the initial state preparation, which reduces the input cost. 

Another recent advancement is that the simulation of non-unitary quantum dynamics can 
be greatly simplified as a linear combination of Hamiltonian simulation (LCHS) problems. 
The LCHS approach not only streamlines the simulation process, but also achieves 
optimal state preparation cost. 

Early fault-tolerant quantum algorithms: The primary goals of algorithms in the early 
fault-tolerant quantum (EFTQC) era are as follows: 1) Use only a short circuit depth and 
simple gates; 2) Rely on a small number of ancilla qubits; 3) Demonstrate robustness to 
noise. One typical example of EFTQC algorithm development appears in the area of 
quantum phase estimation, where the aim is to estimate the energies of a given 
Hamiltonian, assuming access to the Hamiltonian simulation. In the context of quantum 
phase estimation, algorithmic complexities are characterized by the maximal (which 
determines circuit depth) and total Hamiltonian simulation (which determines running 
time). In contrast to the focus in the development of fault-tolerant quantum phase 
estimation algorithms, where efforts emphasize reducing total Hamiltonian simulation, 
early fault-tolerant algorithms aim to minimize maximal Hamiltonian simulation time and 
the required number of ancilla qubits while still maintaining a small total Hamiltonian 
simulation. 

Work done at IPAM: Different directions were explored by the program participants: 
1. Superconvergence of unbounded Hamiltonian simulation: For the simulation of 
unbounded Hamiltonians in the interaction picture, we looked at the (super)convergence 
of the second-order Magnus series expansion. In previous works, it has been observed 
numerically and conjectured that the Magnus series expansion with second order 
truncation exhibits fourth order superconvergence. At IPAM, we set out to prove this fact. 
If one tries to do this naively, one runs into severe problems due to an explosion of the 
number of terms for which one needs to prove commutator estimates. In fact, we had 
major difficulty in carrying out the proof this way, as many terms were in fact unbounded 
operators on L2. The way we managed to make some headway into this proof is to 
introduce some tools from semiclassical microlocal analysis. A key commutator estimate 
with unbounded operators has been completely established using the semiclassical 
pseudodifferential operator machinery.  
2. Quantum implicit differential equations solvers: During the IPAM long program, our 
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focus was on establishing a general quantum time-stepping theory for implicit short-time 
integrators in PDEs, aiming to minimize computational dependence on spatial grid size. 
We specifically investigated elliptic and parabolic PDEs where the preconditioner can be 
explicitly implemented through simple quantum primitives. Leveraging the fast-invertibility 
of the differential part via quantum Fourier Transform, we obtained results for the 
backward Euler method with a cost that depends logarithmically on the number of grid 
points. We have also developed a quantum circuit in terms of simple primitives that 
implements an arbitrary Runge-Kutta method, and we will continue to explore the 
development of these methods for other classes of differential equations, as well as 
preconditioners for higher-order implicit schemes. 
3. Non-Hermitian quantum dynamics: For simulating the non-Hermitian quantum 
dynamics, we have developed a family of identities that express general linear non-unitary 
evolution operators as a linear combination of unitary evolution operators, each solving a 
Hamiltonian simulation problem. This formulation can exponentially enhance the 
accuracy of the original LCHS formula. For the first time, this approach enables quantum 
algorithms to solve linear differential equations with both optimal state preparation cost 
and near-optimal scaling in matrix queries on all parameters. 
4. Quantum phase estimation: During the program, we developed a novel early fault-
tolerant quantum multiple eigenvalue estimation algorithm that demands only one ancilla 
qubit and employs simple quantum circuits, making it suitable for the implementation on 
the early fault-tolerant quantum computer. Importantly, it can be proved to achieve 
(nearly-)optimal complexity scaling in terms of maximal/total Hamiltonian evolution time 
across all regimes, surpassing previous quantum phase estimation methods. 

Outlook: The development of quantum algorithms for scientific computing connects 
various areas of mathematics and quantum information science, including numerical 
algebra, numerical analysis, complex analysis, PDEs, harmonic, and functional analysis, 
etc. This connection enhances estimates and helps to lead to novel quantum algorithms 
which prompt exploration of new mathematical problems. For simulating non-Hermitian 
dynamics, an immediate open question is whether we can develop efficient quantum 
algorithms for systems that are not exponentially stable but only asymptotically stable 
with transient growth behaviors. It would also be of significant interest to simulate non-
Hermitian dynamics on physical quantum devices using state-of-the-art input models. 

5. Quantum Optimization 
Introduction: Optimization problems drive ubiquitous applications across engineering 
and the sciences.  Considering optimization in a quantum context suggests four natural 
categories: 1) Quantum algorithms for classical optimization problems, 2) Classical 
algorithms for quantum optimization problems, 3) Quantum algorithms for quantum 
optimization problems, and 4) Quantum-inspired classical algorithms applied to classical 
optimization problems. Our efforts during this program primarily fall into Categories 1-3.  
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A prototypical quantum optimization problem entails estimating properties of low-energy 
states of a local many-body Hamiltonian. Such problems are a cornerstone of condensed 
matter physics and quantum chemistry. They may also be viewed as quantum 
generalizations of certain types of classical optimization problems, such as boolean 
constraint satisfaction problems (CSPs), since the latter may be cast as a local 
Hamiltonian problem on qubits that is diagonal in the computational basis.      

Quantum algorithms for classical optimization problems: Classical optimization is a 
promising area to demonstrate quantum advantages. Numerous quantum algorithms 
have been developed to solve continuous and discrete optimization problems more 
efficiently than using classical computers. However, demonstrating end-to-end super-
polynomial quantum speedups in classical optimization remains challenging.   
 
Linear regression is a fundamental continuous optimization problem, with myriad scientific 
applications, including statistics, operations research, and machine learning. The 
development of efficient algorithms for large-scale linear regression, both in classical and 
quantum computing is a key research focus. Exponential quantum speedups are 
achievable in preparing quantum states that encode linear regression solutions, though 
this advantage is limited if classical output is needed or if the input matrix is ill-conditioned. 
In more complex constrained optimization problems like linear programming (LP) and 
semidefinite programming (SDP), numerous quantum algorithms have been proposed, 
offering polynomial speedups over classical methods. On the other hand, Quantum 
Hamiltonian Descent (QHD) is a recently developed approach to solve classical 
optimization problems by leveraging quantum mechanics in a unique way, without any 
direct classical analog. It is derived from quantizing dynamic systems that model the 
continuous-time limit of classical gradient-based algorithms. QHD, by leveraging quantum 
tunneling, navigates more effectively through nonconvex optimization landscapes. 
Moreover, QHD's applicability extends beyond standard circuit-based implementations to 
analog quantum simulators, as detailed in the "Hamiltonian embedding" part of Section 
2, thus opening up the possibility for testing quantum optimization methods on large-scale 
empirical benchmarks. 

In the field of discrete optimization, a wide range of problems can be expressed as CSPs, 
while designing efficient CSP solvers remains a challenging problem. A classical-
quantum hybrid approach for CSPs is the Quantum Approximate Optimization Algorithm 
(QAOA), which uses a classical optimizer to train a parameterized quantum ansatz that 
prepares a quantum state encoding a good approximation to the CSP. The popularity of 
QAOA has prompted significant interest in quantum approximation advantages for 
discrete optimization problems. While no such example is currently known, recent work 
completed during this program produced the first superpolynomial quantum advantage in 
approximating a discrete optimization problem, directed Maxcut, albeit in the streaming 
model of computation where space, rather than time, is the resource of interest. This is 
the first example of a superpolynomial streaming advantage for a natural problem, 
resolving a 16-year-old open problem. 
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Classical algorithms for quantum optimization problems: Approaches for solving 
local Hamiltonian problems have historically been classical. While heuristics based on 
physical insights have been the traditional approach, a recent thread has explored 
producing algorithms with rigorous guarantees by employing hierarchies of semidefinite 
programs (SDPs) to solve relaxed problems that yield bounds on quantities of interest. 
SDP hierarchies have recently yielded rigorous approximations for QMA-hard local 
Hamiltonian problems as well as the first hardness of approximation results. 
Approximating local Hamiltonians is intimately related to the quantum PCP conjecture, an 
outstanding open problem.   

While hierarchies of SDPs in commuting variables are common in optimization, the 
application of non-commutative SDP hierarchies to physics is in its infancy. Such 
hierarchies capture physical relationships between observables and can accommodate 
underlying symmetries. SDP hierarchies implicitly represent physical observables and 
wave functions, and the sizes of the SDPs are independent of the dimension of the 
underlying Hilbert space. SDPs at low levels of the hierarchy can be solved efficiently and 
provide increasingly better approximations, converging to optimality, as one moves up 
the hierarchy. Recent applications to quantum field theory (QFT) have remarkably yielded 
precise numerical estimates, excelling beyond standard perturbation expansions and 
renormalization-group approaches. 

This program has sparked new collaborations among quantum field theorists, theoretical 
computer scientists, and applied mathematicians who are uniquely qualified to further 
develop applications of SDP methods to quantum many-body physics and quantum 
chemistry.   

Quantum algorithms for quantum optimization problems: It is natural to imagine that 
quantum computing may be better suited to offer advantages on inherently quantum 
problems rather than classical ones. A canonical example is approximating Quantum 
Maxcut, a local Hamiltonian problem closely related to the well-studied quantum 
Heisenberg model and classical Maxcut CSP. By bridging classical and quantum 
techniques, several algorithms have recently been developed for this problem with 
increasingly better approximation guarantees. However, fundamental questions related 
to optimal approximability and hardness of approximation remain unanswered. Even less 
is known for the general local Hamiltonian problem. 

Work done at IPAM: During the program, several projects emerged in the 
aforementioned categories. We proposed a new quantum linear regression solver with 
quadratic quantum speedup without depending on any data-related parameter. This 
addresses shortcomings of previous QLSA-based approaches that only worked for well-
conditioned inputs. We made progress to quantitatively characterize the quantum 
advantage of QHD for nonconvex optimization, proving that QHD can find the global 
minimum of certain challenging nonconvex optimization problems in polynomial time, 
whereas most state-of-the-art classical optimizers exhibit super-polynomial scaling in 
their search for a good solution. We also managed to extend the idea of QHD to solve 
linear programming with provable end-to-end quantum speedups. We introduced a new 
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method called spectral folding quantum optimization, demonstrating that solutions within 
a constant fraction of optimal solutions is obtainable in polynomial time. This work clarified 
the mechanisms of hardness for the CSP hypergraph problem MAX-3-XORSAT, 
separating the hardness of exact and approximate quantum optimization. We also 
discussed a potential correspondence between local Hamiltonians and quantum spin 
glasses, which would lift the analogous classical result where a random CSP has an 
associated spin glass whose ground state energy encodes the best approximation ratio 
achievable for that CSP. If such correspondence holds, understanding of quantum spin 
glasses would lead to better understanding of local Hamiltonians. 

Outlook: Given the extensive literature and broad interest within computational sciences, 
the interplay between quantum computing and optimization will continue to thrive as an 
active research field. The pursuit of strong theoretical guarantees for quantum 
optimization algorithms remains an important research direction, for example, super-
Grover speedup for classical optimization problems such as CSP and even super-
polynomial separations between quantum and classical for nonconvex problems. 
Combining classical algorithms with well-known approximation guarantees may provide 
one promising route to proving advantages in quantum optimization algorithms. On the 
other hand, considering the rapid advancement of quantum engineering and the intricate 
co-design between quantum algorithms and realistic physical hardware, achieving end-
to-end quantum advantage for optimization problems emerging from application domains 
may remain a challenging endeavor in the near future. 

6. Quantum Learning 
Introduction: The intersection between machine learning (ML) and QIS broadly falls into 
two categories: 1) classical machine learning for quantum many-body systems and 2) 
quantum machine learning (QML). Research in category 1) has built upon decades of 
research in ML providing several applications in quantum many-body physics, while 
category 2) is a recently developed field, still in its infancy. In category 1), we discuss 
recent progress on the prospects of classical learning with access to quantum data. In 
category 2), we discuss a class of parameterized quantum circuits known as variational 
quantum algorithms (VQA) which suffer from barren plateaus (BP), making optimization 
very difficult. In this section, we discuss a new Lie algebraic framework, known as the 
dynamical Lie algebra (DLA) for characterizing sources of barren plateaus. 

Classical machine learning for quantum many-body systems: Over the last half-
decade, several classical machine learning methods to learn properties about quantum 
many-body systems emerged. Given a quantum many-body Hamiltonian, classical 
machine learning methods can  find ground state energies, reconstruct observables, 
perform quantum tomography, among many other applications. Mathematical results 
demonstrated that classical machine learning algorithms which learn with access to data 
in the form of classical shadows, efficiently obtained through few measurements, are 
proven to be more efficient than those without access to data. In related work, during this 
program, data from imperfect measurements on neutral atom quantum computers can 
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enhance variational Monte-Carlo (VMC), demonstrating that hybrid classical-quantum 
machine learning is approachable within the NISQ era. These results provide  new 
insights into understanding the precise role that data plays in learning quantum many-
body systems. Moreover, experimental advances can further enhance classical machine 
learning methods to explore quantum many-body systems with exotic phases and 
dynamics. 

Variational quantum algorithm methods and training: Variational quantum algorithms 
are essentially any quantum algorithm that is parameterized and subsequently optimized 
to minimize some loss function. Given this generic setting, a cornucopia of VQA variations 
were proposed to suit a variety of different learning tasks. 

The most studied form of variational quantum algorithms corresponds to preparing a 
quantum state that satisfies constraints given by a loss function. Typically this is done by 
parameterizing a quantum circuit ansatz and applying it to a constant easy-to-prepare 
state. Sometimes, the goal is to minimize some Hamiltonian that maps to a physical or 
combinatorial problem, and in other instances it is to find a state that generates a specific 
distribution when measured (generative modeling). These algorithms all are trained by 
minimizing a loss function consisting of observables. 

There are also QML models that learn  a desired unitary, for example . Some of these 
methods are purely unitary approximations, while others learn a  map between  input 
quantum states in a dataset to target output states. Whereas others modify this process 
slightly by having either the input and/or output data to be classical instead, so they find 
ways to map the information into/from the quantum system to create an end-to-end 
process. For instance, one such method presented during the program embeds 
information about atom configurations into an input quantum state, and then produces a 
mapping to the associated quantum ground state for that configuration. 

Despite the differences between the different types of VQAs, they typically share the 
same optimization process. A classical optimizer decides how to query the quantum 
system to find the optimal parameters (though there are ongoing works discussed during 
this program that are studying how to do this with a quantum optimizer instead). The 
methods can be 1st or 2nd order gradient based methods, zero-order sampling or global 
optimization procedures. However, there are a few key differences that make the task 
more complicated than typical fully-classical optimization. The first issue is that because 
there is a quantum-to-classical interface, there is essentially always sampling noise. The 
second issue is that access to gradient information is more expensive than in the case of 
classical models. On top of this, while the literature in this field is still expanding, it isn’t 
always known how to access analytical gradients for all types of VQAs. So while classical 
optimization is typically dominated by gradient-based methods, these differences make 
the choice not so clear-cut for VQAs. As a result, how to best optimize them is still an 
open question. 

Challenges in optimizing variational circuits: A series of works observed exponentially 
diminishing variance in the loss functions for VQAs of practical use. Referred to as barren 
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plateaus, this can be understood as the quantum analogue of the zero gradient problem 
in classical machine learning. Empirical results indicate that as we add more qubits, 
generic optimization becomes significantly more difficult. A core focus of our working 
group was understanding the underlying foundations and potential solutions. 

The dynamical Lie algebra (DLA) is crucial to our current theoretical understanding of 
barren plateaus. This is defined as the Lie closure of the generators of the parameterized 
circuit. The DLA characterizes a sub-algebra of the tangent space of the special unitary 
group and provides information about the ability of the circuit to produce different 
operators as the parameters are varied. Recent results presented at IPAM, show that as 
we increase the dimension of our Lie algebra we reduce the variance of our loss function. 
This minimization of variance makes optimization difficult, as the loss is concentrated in 
a small area in the parameter space. Hence with increasing circuit depth and DLA 
dimension, the variance reduces exponentially and circuits become untrainable. In a less 
extreme case, low expressibility of the circuit ansatz contributes to barren plateaus 
because when a circuit has less variation it is difficult to tell whether you are going in the 
right direction to minimize as you traverse the loss space. Variational quantum methods 
rely on the gradient or differences between points in the loss space to tell the algorithm 
whether it is moving towards or away from the minimum. 

Work done at IPAM: During the long program, a working group on “Quantum Information 
and Machine Learning” was formed. This working group organized several research talks 
from visiting researchers at IPAM, and a reading group where we discussed recent 
impactful papers. Below is a description of some of the areas we explored.  
1. Empirical Learning Results and Simulability: One project that came out of these 
discussions is centered around using empirical results to motivate theory. Specifically, if 
you can find a unitary to maximize the difference in expectation of an observable applied 
to a quantum state before and after said unitary is applied, you can use this result to 
provide bounds on the simulatability of certain groups of operations. While this isn’t 
necessarily quantum machine learning in the sense that we’d expect to do this on a real 
quantum device, it does involve the learning of unitaries and simulated VQAs to gain 
insights into where there is a theory-gap in quantum simulation. 
2. Barren Plateaus: Another interesting direction that was identified at IPAM was to use 
the tools proposed in the work of unified theory of BPs to help guide the research in the 
circuit ansatz development for variational quantum algorithms. In the aforementioned 
work, the authors identified that the building blocks of the Dynamical Lie Algebra, coming 
from the commutators, can help to determine whether BPs will be encountered in the 
training. Moreover, they explicitly showed the role that the initial state and the observables 
play in introducing or mitigating BPs. Interestingly, this could help to identify good circuit 
ansätze without expensively optimizing the parameterized quantum circuits to understand 
whether BPs will be encountered.  

Outlook: Ultimately quantum learning is an interesting and promising field, but there are 
many aspects of it that require additional study. On essentially all fronts, there’s still work 
to be done in pushing the limit in both what can be empirically and provably done. 
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Compared to classical machine learning, quantum models have fewer theoretical 
guarantees. But especially in the case of VQAs, even if these properties can be shown, 
there still needs to be research into how we can be confident that we will still be able to 
properly train them as they scale to larger systems. 

7. Open Quantum Systems 
Introduction: The mathematical representation for the coupling of a subsystem-bath that 
accurately represents the response to environmental effects has a recurring presence in 
many applications in quantum information sciences. Open quantum systems appear 
naturally in noisy quantum devices, such as photonic and phononic instruments or atom 
arrays under the influence of an electro-magnetic field. Described in the density matrix 
picture formalism, the subsystem-environment interactions of interest can be modeled by 
the Lindblad master equation. The theory of master equations or Lindbladians was 
originally derived from quantizations of Green functions, and has now emerged as an 
accepted model to describe the interaction of a small quantum system with a surrounding 
environment.  

Analysis: The time evolution of an open quantum system is determined by a semigroup 
of quantum channels. In contrast to quantum circuits, these channels require a trace out 
to the subsystem, and hence produce mixed states. Following the photonic tradition, the 
generator of such an evolution decomposes in either a dissipative (drive) part and a noisy 
part given by so-called jump operators, which corresponds to jumps of energy of electrons 
in an atom array. The analysis of open quantum systems time evolution is of fundamental 
importance to understand, for example, the convergence speed (mixing time) to the 
steady state. The Lindbladian evolution fundamentally diverges from the evolution 
described by the Schrödinger equation. Due to the influence of noise and interactions 
with the system, the Lindblad evolution is inherently non-reversible and may converge to 
a steady state at times. 

We identified key problems for noise models given by Lindbladians: 1) Determine the 
steady states; 2) Determine the mixing time, i.e., the time required to approximately reach 
the steady state for arbitrary input state; 3) Describe the characteristic properties (for 
example periodicity and register swapping) when combining drive and jump part, and how 
adding drive changes steady states and mixing time; 4) Identify real experiments for noise 
simulation; 5) Determine applications in state preparation; 6) Find explicit gates for 
simulation and determine simulation complexity. 

Some Lindblad master equations can be equivalently represented by a Wigner-Fokker-
Planck formulation, for example in the case of continuous quantum variables. In the 
Wigner-Fokker-Planck scenario some of the aforementioned problems  of interest have 
been solved. Indeed, for the benchmark problem of the harmonic potential the mixing time 
is already known by means of studying its Wigner formulation, i.e., it depends on the 
quadratic form representing the coherent steady state solution and it is obtained by 
studying the relative entropy of the system in the Wigner formulation. This steady state 
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solution is known to be independent of the Hamiltonian of the system (as opposed to the 
solution of the classical Fokker-Planck equation).  

More generally, for hermitian jump operators, a whole wealth of techniques is available 
thanks to tools from representation theory, logarithmic Sobolev inequality and 
noncommutative transport theory, and recent advances in learning open quantum 
systems. The following paragraphs will provide a more detailed description of  Lindbladian 
simulation and ground state preparation. 

Lindbladian simulation: As the demand to comprehend open quantum systems 
persists and novel Lindblad-based algorithms emerge, the significance of quantum 
Lindbladian simulation has grown substantially, gathering considerable attention in 
recent years. Given a Lindblad equation and a stopping time, a quantum simulation 
algorithm often refers to a quantum channel with the following two characteristics: 1. With 
a density operator (or state representation) input, it produces the solution (or state 
representation) at the stopping time; 2. The circuit can be efficiently implemented on the 
quantum computer assuming the oracle access to the Hamiltonian and jump operators. 
Given the non-unitary feature of Lindblad dynamics, the design of this simulation quantum 
channel deviates from classical Hamiltonian simulation, prompting the need for inventive 
ideas and techniques in its development. 

Ground state preparation: One potential application of quantum computers is the 
simulation of ground state (GS) properties in quantum many-body systems. However, 
when assessing the end-to-end algorithmic cost, a significant conceptual bottleneck 
arises in the form of the state preparation problem. Most quantum systems in nature reach 
the ground or thermal state exponentially fast. Inspired by this intuition, algorithms that 
emulate this cooling process might be good candidates for the ground state preparation. 
Specifically, by constructing jump operators that only allow transitions from higher to lower 
energies, the system state can be “shoveled” towards the ground state. In recent works, 
such algorithms were developed with optimized asymptotic complexity and circuit depths, 
as well as minimal number of ancilla qubits. Although these algorithms behave efficiently 
in small systems, further numerical experimentation is essential for a comprehensive 
understanding of their capabilities in larger contexts, see key problems 1,2,5. 
 
An important aspect that numerical investigations could assess is the resource cost of 
GS preparation algorithms associated in terms of circuit depth or number of T-gates with 
the performance boost achieved in terms of overlap provided from the GS preparation 
algorithm with the true ground state of the system. Careful resource estimation analysis 
should be performed to take into account this trade-off and explore the potential speedups 
associated with ground state energy estimation algorithms given heuristic quantum state 
preparation algorithms, like VQE, low-depth booster algorithms or  Lindblad-based 
algorithms.  

Barren plateaus in the presence of noise: An open question in the field is the 
connection to open systems that could further be used to characterize the trainability of 
variational quantum algorithms (VQA) under the effects of noise, see Quantum Learning 
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section. Thanks to the geometric nature of noise models they are naturally connected to 
Lie algebra techniques. Through the efforts to characterize the underlying causes of 
barren plateaus (BP), recent works in Dynamical Lie Algebras (DLAs) provide a 
mathematical framework to examine the phenomena of BP’s in the presence of noise. 
Indeed, barren plateaus impose a fundamental challenge in QML. A possible connection 
between the DLAs and open quantum systems could be made by considering the full 
Hamiltonian structure of the universe, i.e., subsystem and  environment, in which the 
subsystem is embedded in order to have a possibly unitary description of  the system 
including noise.  

Work done at IPAM: During the time at IPAM, at least six projects with different subsets 
of participants have been formed to address problems 1-6 mentioned in the Analysis 
section. There are indeed several papers in preparation concerning simulation time and 
work on numerical verification. Problem 4 has been addressed in a talk by two 
experimentalists from UCLA, which will lead to an interdisciplinary work in error 
correction.  
 
In one of the collaborations a new Lindbladian simulation algorithm was introduced during 
this program. The new method offers a systematic approach to obtain a unitary 
approximation to Lindblad dynamics at arbitrarily high orders. Furthermore, the unitary 
approximation can be efficiently and robustly simulated, involving only Hamiltonian 
simulation and the tracing out of ancilla qubits, without the necessity for dedicated 
parameter choices to ensure a high success probability. A closely related project with a 
different group of collaborators identified concrete gates simulating Lindbladians starting 
from a fixed set of building blocks. This led to a notion of simulation gap. Using previous 
work on convex complexity functions, upper and lower bounds it is now in reach to 
conjecture that simulation cost grows linear in the number of qubits and polynomial in 
time. In comparing different simulation models, it is paramount to clarify different 
assumptions for computability.  
 
Complementary to the theoretical endeavors above, numerical simulations emerged as a 
necessary tool. We developed numerical schemes for simulating the ground state 
preparation algorithm, which reduced a quadratic time and memory scaling to linear 
scaling, for implementing the filtered jump operators.  

The quantum nature of the Wigner-Fokker-Planck equation prompts work in quantum 
algorithms for its simulation. A novel avenue is to develop and analyze quantum 
computing algorithms for this problem and to possibly identify the particular structure of 
gates to solve the Wigner-Fokker-Planck equation, and compare it to the complexity of 
the classical counterpart.  

In connection to experimental work for prolonging the lifetime of bosonic quantum 
architectures, photonic error-correcting schemes are being studied for experimental 
realization exploiting dissipative operators.  
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Finally, further development of heuristic GS quantum algorithms could play a significant 
role in improving the performance of many quantum algorithms. Concrete examples of 
applications of the DLA formalism for practitioners incorporating noise have yet to be 
identified. Our collaborative efforts with the Quantum Learning group have been 
instrumental in addressing the challenges posed by this problem.  

Outlook: Throughout this program the theory of open quantum systems served as a 
unifying principle combining analytical, numerical and experimental investigations. The 
perspective of finding and learning new quantum gates for a myriad  of tasks is exciting. 
This turns a new page in quantum computation. In addition, the broad interest in open 
quantum systems guides us towards interdisciplinary collaboration on fundamental 
noise models.  

8. Noisy Intermediate-Scale Quantum (NISQ) 
Computation 
Introduction: In the seminal paper from Preskill in 2018, the term noisy intermediate-
scale quantum (NISQ) computers was introduced. Even though the definition of the term 
is not very strict, it characterizes quantum devices with a small number of qubits and 
circuit depth where quantum error correction is too expensive to be implemented on 
hardware. Since then, the NISQ era has seen significant progress in reducing the error 
rates characterizing the quantum hardware. Numerous experiments demonstrate that 
current quantum devices, in spite of all their problems, could still perform certain tasks in 
this NISQ regime. Of course, the pressing question is whether this era could unfold 
practical quantum advantage, i.e., showcase that these devices are capable of performing 
tasks of industrial relevance by either aiding classical computers or directly targeting tasks 
beyond the capabilities of classical computation. Interestingly, this redirects the research 
focus back to quantum algorithm developers to come up with problems of practical 
relevance that current quantum devices could tackle in the range of ~100 qubits and ~100 
circuit depth. 

In the following, we further discuss quantum hardware and software developments, 
quantum error mitigation (QEM) techniques, and quantum algorithms suited for NISQ 
devices. 

Hardware and software developments: Multiple quantum computing hardware 
architectures and paradigms exist. Superconducting architectures implement each qubit 
as a superconducting circuit. The logical state of a qubit is determined by the number of 
Cooper pairs which tunnel through an insulating barrier in the circuit, which is manipulated 
using microwave pulses. Neutral atom and trapped ion architectures use optical tweezers, 
electric and magnetic fields to manipulate atoms. Photonic quantum computers use 
photons to represent and process quantum information. Many other architectures exist, 
each with their own strengths and drawbacks. However, those described above are used 
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by the largest companies researching quantum computing, including Google, IBM, 
Microsoft, Xanadu, and IonQ. 

Current NISQ-era quantum hardware is restricted by short coherence times, significant 
gate infidelity, environmental noise, and a limited number of qubits. The first two of these 
constraints may be addressed by designing shorter and more accurate gates. In 
superconducting architectures (and others), this can be done via pulse engineering using 
quantum optimal control. In this approach, an optimization process is performed to find 
pulses which implement logical gates by minimizing key properties of the gate, such as 
its infidelity, duration, or the energy of the pulses used in the implementation. 

Alongside extensive hardware development efforts, a growing number of open-source 
quantum computing tools have been proposed in recent years. Developments of the 
universal protocol framework QASM (now cQASM 1.0) enable defining quantum circuits, 
gate operations and measurements in the way that can be processed by current quantum 
computers. To simplify circuits design process, a graphical quantum circuit simulator 
Quirk is very useful to easily build and manipulate circuits using drag-and-drop features. 
A variety of software frameworks were created by the major players in quantum 
computing, e.g. Qiskit (IBM), Cirq (Google Quantum AI), PennyLane (Xanadu), QULACS 
(Kyoto University, QuanSys) or TKET (Quantinuum), to mention just a few.  

Variational Quantum Eigensolver (VQE): The VQE is a hybrid quantum-classical 
algorithm using the variational principle for ground state preparation of a Hamiltonian, 
which is one of the most promising algorithms for NISQ devices to address quantum 
chemistry, materials science, quantum simulations, or optimization problems. A 
parameterised ansatz circuit is used to produce trial wave functions on the quantum 
device, allowing efficient measurement of the Hamiltonian expectation value, and 
classical algorithms are used to variationally optimize the ansatz parameters. Importantly, 
the VQE as well as other variational quantum algorithms (such as QAOA mentioned in 
section 5) has been shown to present some degree of resilience to the noise in current 
quantum hardware. However, the quality of a VQE simulation is only as good as the 
ansatz itself, and much work has been done to design compact, hardware-efficient and/or 
adaptive ansätze with the goal of providing high accuracy with few parameters and 
shallow circuits. 

Despite recent advances and successes, a number of bottlenecks have been identified 
which could prevent the VQE from achieving quantum advantage, such as the substantial 
cost of observable sampling, exponential scaling due to the barren plateau problem for 
ansätze with high expressibility, the complexity and convergence of the optimization 
process, and the need for effective error mitigation techniques needed to improve the 
accuracy of VQE. These questions are the topic of fast-moving research and have been 
discussed in the Beyond VQE working group. 

Error mitigation: To make near-term quantum algorithms resilient against errors in 
quantum hardware, various error mitigation techniques have been developed. These 
methods reduce the error in expectation values without significant increase to circuit 
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depth, by classically post-processing an increased number of measurements. One 
method of particular interest to the program was Probabilistic Error Cancellation, which 
probabilistically introduces additional gates based on a learned noise model in such a 
way that the noise will cancel in expectation.  Another error mitigation technique 
discussed was Zero-Noise Extrapolation, where the noise is deliberately amplified with 
the goal of fitting a noise model to the noisy expectation values and extrapolating to the 
zero-noise limit. Both these methods rely on accurate models of noise, which can be 
highly resource-intensive. However, recent advances in modeling noise across the full 
device has enabled scaling these methods to suppress noise in algorithms on a significant 
number of qubits. While these were the main error mitigation techniques discussed, other 
error mitigation methods include filtering results based on known symmetries of the 
quantum circuit, calibrating qubit readout errors, purification-based techniques, and 
dynamical decoupling. 

Work done at IPAM: During this program, data from experiments performed using a 
variety of hardware architectures was discussed by speakers from Google 
(superconducting qubits), IBM (superconducting qubits) and Harvard University (neutral 
atom qubits). The use of high-order time-stepping methods to compute optimal pulses 
more efficiently have been investigated within the duration of the program. These could 
make it practical to directly implement three-qubit gates, or even larger gates, which are 
more difficult to simulate and consequently more difficult to find optimal pulses for. Three-
qubit gates, for example the Tofolli gates, are typically implemented as a circuit of several 
two-qubit gates. The combined circuit often has a longer duration and higher infidelity 
than when the pulses to realize the gate are computed directly by pulse engineering. 
Consequently, this work could help to mitigate the limitations of NISQ era devices. We 
also had a stimulating group discussion with Prof. Jens Palsberg (Computer Science, 
UCLA) on current and future efforts, as well as challenges regarding implementations of 
key quantum algorithms available up to date.  

Further, we discussed ways in which variational quantum algorithms can be combined 
with classical methods for quantum chemistry, and proposed to investigate the 
effectiveness of these combined methods in the presence of noise from present-day 
devices. As mentioned earlier, one bottleneck of VQE algorithms is related to the 
necessary number of measurements. Previous estimates show that for a single energy 
estimation close to chemical accuracy of relatively small molecules, like methane, the 
runtime is approximately two days under certain assumptions. Interestingly though, in 
certain cases, one could use VQE algorithms to get good ground state approximations 
(with fidelity ~0.9) without being within chemical accuracy. In cases where this happens, 
important runtime reductions for a single energy estimation could be achieved. For 
example, one hundred times fewer measurements could bring the runtime for a single 
energy estimation from two days to two hours. Of course, due to the heuristic nature of 
VQE algorithms and arguments from numerical analysis, there is no guarantee that such 
a favorable scenario could be realized in all cases, but it is interesting to perform more 
heuristic simulations and identify use cases where this could be achieved. 
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Outlook: Whether or not quantum advantage will be possible on near-term (pre-fault 
tolerant) devices, performing experiments on NISQ devices helps to bridge the gap 
between hardware capabilities, software developments, and algorithm design. To this end 
we are interested in building a small toolbox/toolkit that will implement some of the key 
existing algorithms and testing them on various hardware platforms. Additionally, the high 
order time-step pulse engineering techniques will be implemented and disseminated as 
an open source package to be released in 2024. 

9. Fault-Tolerant Quantum Computation 
Introduction: Many of the quantum algorithms described in this document and 
throughout the literature require access to stable qubits and high-fidelity quantum 
operations. Current hardware does not meet these conditions and has error rates many 
orders of magnitude higher than those of classical hardware. However, in parallel to the 
development of classical computing, researchers are designing schemes called “quantum 
codes” that encode logical qubit information across multiple physical, noisy qubits in a 
way that allows errors to be detected and corrected. Exciting progress is being made in 
constructing these codes and proving that they have desirable properties, as will be 
discussed further in this section. Quantum error correction (QEC) also has interesting 
connections to other areas of computer science, mathematics, and physics, some of 
which are briefly mentioned. As quantum computing progresses towards fault tolerance, 
most expect that we will pass through an era called “early fault-tolerant quantum 
computing” (EFTQC) which has unique constraints for algorithm design and has garnered 
recent attention. It will also be important for progress towards fault tolerance to estimate 
the end-to-end resources required to run algorithms in this regime. 

Quantum error-correcting codes: There are many categories of quantum error-
correcting codes, including but not limited to surface codes, low-density parity check 
(LDPC) codes, subsystem codes, and Floquet codes. These can be formulated in terms 
of stabilizers, where each code has a group of mutually commuting stabilizers that leave 
the quantum computer’s initial state unchanged.  Any errors that do not commute with the 
stabilizers are then detected upon measurement of a corresponding ancilla qubit.  

Kitaev’s toric code uses parity check ancilla qubits to measure local X or Z stabilizers on 
four neighboring qubits along with a periodic boundary condition (as in the torus). 
Implementing the toric code with the periodic boundary condition may instead involve 
non-local operations, rendering it unfavorable for current devices. On the other hand, the 
surface code has identical formalisms but without the periodic boundary condition. While 
both of these topological codes can achieve an arbitrary code distance (scaling as 
square-root of the number of physical qubits), the number of encoded logical qubits 
remains constant, resulting in a large physical qubit overhead for more logical qubits.  

A long-standing open question has been to find quantum codes with good properties, 
such as ensuring that both the number of encoded qubits and the code distance scale 
linearly in the number of physical qubits. Recently, this feat was achieved through the 
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development of quantum LDPC codes, derived from expander graphs. These codes also 
have connections to the quantum probabilistically checkable proofs (PCP) conjecture, 
which is the quantum counterpart to the classical PCP theorem. Unlike the PCP theorem, 
quantum PCP is still a conjecture. However, a recent resolution to the no low-energy trivial 
states (NLTS) conjecture was found using these quantum LDPC codes, implying there 
could be hope to resolve quantum PCP affirmatively in the future. 

Early fault-tolerant quantum computers: Overheads for fault tolerance seem to present 
a particular challenge as we transition from the NISQ era to the era of early fault tolerance. 
Algorithms research in other sections of this white paper has focused on reducing the 
number of ancilla qubits required to implement certain subroutines (e.g., energy 
estimation or state preparation). Nevertheless, other considerations will likely augment 
these constraints as hardware continues to mature. For example, demonstrations on early 
fault-tolerant hardware have already primarily focused on implementing non-universal 
transversal gates. In fact, by the Eastin-Knill theorem it is clear that transversal gate sets 
cannot be universal and additional logical resources are required to implement universal 
quantum computation, e.g., magic state distillation. Thus the realization of the first 
universal fault-tolerant quantum computer will likely be dominated by the cost of methods 
like magic state distillation. The capabilities of early fault-tolerant quantum computers and 
the prospects for using them to achieve quantum advantage are challenged by these 
overheads, and the notion that they will likely have vastly different logical error rates for 
Clifford and non-Clifford operations. Bespoke algorithms that optimally account for these 
asymmetries are likely to be an area of active research in coming years.  

The early fault-tolerant quantum computing (EFTQC) regime could help better understand 
how the transition from NISQ to FTQC could be realized in practice. For example, 
studying the interplay between QEM and QEC can characterize the transition from NISQ-
to-EFTQC. Introducing realistic noise models that capture the performance of quantum 
devices can guide algorithmic developments to exploit the capabilities of quantum 
hardware.  Another interesting open direction is the transition from EFTQC-to-FTQC. To 
this end, benchmarking quantum algorithms that traditionally belong to EFTQC and FTQC 
could help understand what problem sizes in terms of number of logical qubits each 
algorithm could tackle given the same number of physical qubits and error correction 
scheme. The EFTQC era could help bridge the gap between NISQ and FTQC regimes 
and the corresponding efforts in these two fields of quantum computation. 

Fault-tolerant resource estimation: The overheads associated with enabling fault-
tolerant quantum computation are among the most significant challenges confronting the 
realization of quantum computers capable of executing algorithms that might achieve 
quantum advantage. The large number of physical qubits needed to encode logical qubits 
is the overhead that typically receives the most focus, but the implementation of logical 
operations, decoding, routing, and magic state distillation comprise others that contribute 
to the hardware requirements for implementing any given algorithm. There is a growing 
body of research focused on quantifying these costs for different codes and architectures, 
with the aim of understanding which quantum algorithms (and input instances) can be 
expected to be implementable in computational volumes that are motivated by optimistic 
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assumptions about what advances in physical hardware might be realized in the coming 
years. 

Presently, the majority of analyses have focused on relatively conventional surface codes 
and the assumption that physical error rates will eventually reach one error per thousand 
or ten thousand physical operations. In that context, specific challenge problems in 
quantum chemistry (e.g., sampling from the energy eigenspectrum of FeMoco) have 
converged on resource estimates in the neighborhood of thousands of logical qubits with 
logical error rates sufficient to execute tens of billions of non-Clifford operations (i.e., the 
dominant cost associated with fault-tolerant quantum computation in these architectures). 
These resource requirements are presently vastly larger than any available NISQ 
hardware and bringing these costs down through innovation in algorithms and 
architectures are great motivators. It also warrants noting that there are relatively few 
detailed end-to-end analyses of these costs, though we anticipate that this will change 
rapidly as progress in implementing fault-tolerant quantum computation is made.  

ZX-Calculus: ZX-calculus is a graphical language used to describe linear maps between 
qubits. It emerged from categorical quantum mechanics and consists of string diagrams 
paired with rewrite rules that allow computations to be done graphically. Under certain 
rewrite rules the ZX-calculus has been shown to be sound, universal, and complete. 
These properties serve as the foundation for a growing area of research that uses ZX-
calculus as a tool to analyze and better understand certain aspects of quantum 
computation. Such works have had significant impacts in areas including circuit 
compilation and optimization, ansatz interpretation, measurement-based quantum 
computation, and quantum error correction (QEC). 

The influence of ZX-calculus is extensively growing in the QEC literature for several 
reasons. ZX-calculus is especially well-suited for tasks that require an understanding of 
gate-level quantum operations, which is currently the way quantum codes and checks are 
described. ZX-calculus also describes general linear maps between qubits, rather than 
just unitary maps. Thus, it can be used in instances where representations using typical 
quantum circuit diagrams might be inadequate. For example, it is used extensively to 
design, verify, and optimize lattice surgery procedures for the surface code, since basic 
lattice surgery operations act non-unitarily on logical states. Another success of ZX-
calculus in QEC was the recent unification of different fault-tolerance paradigms. The 
authors showed that circuit-based, measurement-based, fusion-based, and Floquet-
based quantum computation all share an underlying stabilizer fault-tolerance structure 
using ZX-calculus. These results give researchers a way to “translate” between the 
different paradigms and hopefully enable better transfer of ideas and successes between 
the different areas. 

K-theory, geometry and codes: Quantum mechanics is based on Hilbert space and the 
linear algebra thereof. Freedman calls this a naked Hilbert space. Quantum Information 
Science requires additional structure, in particular tensor product structure. Quantum 
entanglement highlights how such additional structure brings in surprising implications 
and fertile applications. On the other hand, Hilbert spaces can be endowed with manifold-
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like structures. Synthesizing both tensor and parameter structures to the naked Hilbert 
space has yet to be fully investigated. Recent work by Freedman and Hastings suggests 
that K-theory of quantum information or quantum K-theory is the emerging structure. This 
new “quantum K-theory” should inherit the regularity of traditional K-theory such as Bott 
periodicity. This would indicate hidden regularity structure for entanglement, which would 
come to life through codes and error correction. 

Recent breakthrough construction for quantum LDPC codes stems from a product of 
classical LDPC structure and combinatorial data of expander graphs. Vice versa, 
according to Freedman and Hastings,  codes can be used to construct interesting eleven-
dimensional manifolds. This corroborates the idea that homological and geometric 
properties of manifolds could productively inspire construction of codes with either better 
decoding properties or additional more exotic features. This also applies to the overlap 
with black hole physics, where information of a black hole is encoded into the boundary 
of a quantum field theory. The information collected during the long program suggests 
that a deeper analysis is in order.      

Work done at IPAM: During this program a group formed to work on constructing explicit 
examples of small quantum Tanner codes. Although quantum Tanner codes are a 
provably good LDPC construction in the asymptotic limit, there are no known explicit 
constructions with good properties. We reviewed the code construction and selected the 
smallest field over which to construct left-right Cayley complexes, resulting in a code 
requiring about 700 physical qubits. Work is ongoing to implement this example and 
determine the number of logical qubits encoded, as well as to empirically estimate the 
code distance.  

Another project completed during the program was an analysis of the fault-tolerance 
overheads associated with implementing different energy estimation algorithms intended 
for early fault-tolerant quantum computers. It was found that phase estimation algorithms 
based on the Hadamard test generally have lower overheads than iterative phase 
estimation, thanks largely to the relative robustness of these algorithms to depolarizing 
logical errors. 

An additional group formed to study ZX-calculus and some of its applications. Although 
not so many of the QEC connections were explored, the group spent significant time 
working with an extension of ZX-calculus, called ZXW-calculus, which makes use of W 
states to facilitate exponentiation of Hamiltonians. Using ZXW-calculus, the group 
obtained an exact Magnus remainder of the product formula for unitary propagators of 
several Hamiltonians.  

Outlook: Fault-tolerant quantum computers are necessary for performing truly useful 
calculations to impact fields from cryptography to chemistry. Although progress in 
quantum error correction is steady, more development is needed to realize fault-tolerant 
quantum computation. More ideas and tools are utilized and integrated from diverse 
fields, ranging from AdS/CFT holography, sub-systems, to non-invertible symmetries. 
Tensor categories will continue synthesizing diverse approaches to QEC. Quantum K-
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theory needs to be further understood, but it is already clear that it sheds new light on the 
way we address QEC. While the ZX-calculus and its variants are emerging as tools 
providing a different perspective on known results, we anticipate broader adoption of and 
familiarity with the ZX-calculus will enable new kinds of results. 

10. List of Acronyms  
 
AdS/CFT Anti-de Sitter/conformal field theory 

BE  Block encoding  

BP  Barren plateau 

BQP  Bounded-error quantum polynomial time 

CSP  Constraint satisfaction problem 

DLA  Dynamic Lie algebras 

EFTQC Early fault-tolerant quantum computation  

FTQC  Fault-tolerant quantum computation 

GS  Ground state 

LCU  Linear combination of unitaries 

LCHS  Linear combination of Hamiltonian simulation 

LDPC  Low-density parity check 

ML  Machine learning 

NISQ  Noisy intermediate-scale quantum 

NLTS  No low-energy trivial states 

ODE  Ordinary differential equation 

OQS  Open quantum system 

PCP  Probabilistically checkable proofs 

PDE  Partial differential equation 

QAOA  Quantum approximate optimization algorithm 

QEC  Quantum error correction 

QEM  Quantum error mitigation 

QFT  Quantum field theory 

QHD  Quantum Hamiltonian Descent 
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QIS  Quantum information science 

QLSA  Quantum linear system algorithm 

QMA  Quantum Merlin Arthur 

QML  Quantum machine learning 

QRAM Quantum random access memory 

QRACM Quantum random access classical memory 

QRAQM Quantum random access quantum memory 

QSVT   Quantum singular value transformation 

SAT  Boolean satisfiability problem 

SDP  Semidefinite programming 

VQA  Variational quantum algorithm 

VQE  Variational quantum eigensolver 
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