Exercises on groupoids and their *-algebras

- 1. Use the groupoid axioms given in lecture to check at least 1-2 of the following facts for γ, α, β in a groupoid G:
 - (a) $(\gamma^{-1})^{-1} = \gamma$
 - (b) If $\alpha = \gamma^{-1}\gamma$, then $\alpha \in G^{(0)}$.
 - (c) If $\alpha^2 = \alpha$, then $\alpha \in G^{(0)}$
 - (d) $\alpha \gamma = \beta \gamma$ implies $\alpha = \beta$
- 2. The transformation groupoid for a set X and group Γ which acts on X via bijections is defined in the following way:

$$G:=\Gamma\times X$$

$$G^{(0)}:=\{e\}\times X \text{ (which is identified with } X \text{ below)}$$

$$r(g,x):=g\cdot x; \quad s(g,x):=x$$

$$(g,h\cdot x)(h,x):=(gh,x) \text{ (and these are the composable pairs)}$$

Find $(g,x)^{-1}$. Also check some of the groupoid axioms, such as $\gamma\gamma^{-1}=r(\gamma), \ \gamma^{-1}\gamma=s(\gamma),$ or that multiplication is associative.

- 3. Show that if G is étale, for each $x \in G^{(0)}$, xG and Gx are discrete, i.e. singletons are open in the relative topology.
- 4. Check that if $f \in C_c(G)$ is supported on a bijection, then $f^* * f$ is supported on $s(\operatorname{supp} f)$. Calculate $(f^* * f)(\gamma)$ for $\gamma \in \operatorname{supp} f$. Also calculate f * g for $g \in C_c(G^{(0)})$.
- 5. Check that for each $\eta \in G$, the operator defined by

$$U_{\eta}: \ell^{2}(Gs(\eta)) \to \ell^{2}(Gr(\eta))$$

 $\delta_{\gamma} \mapsto \delta_{\gamma\eta^{-1}}$

is a unitary operator, and that the relation

$$\pi_{r(\eta)} = U_{\eta} \pi_{s(\eta)} U_{\eta}^*$$

on the regular representations π_x for $x \in G^{(0)}$ is satisfied.