- 1. Solve the following:
 - (i) If $p \in B(\mathcal{H})$ is a projection, show that 1 p is also a projection and $(1 p)\mathcal{H} = (p\mathcal{H})^{\perp}$.
 - (ii) For projections $p, q \in B(\mathcal{H})$, show that pq = 0 if and only if $p\mathcal{H} \perp q\mathcal{H}$.
- **2**. Let \mathcal{A} be a non-unital Banach algebra. Equip $\mathcal{A}_1 := \mathcal{A} \times \mathbb{C}$ with the following algebra structure: for $x, y \in \mathcal{A}$ and $a, b \in \mathbb{C}$ define

$$(x, a) + (y, b) := (x + y, a + b)$$

 $b(x, a) := (bx, ba)$
 $(x, a)(y, b) := (xy + bx + ay, ab)$

Also define

$$||(x,a)|| := ||x|| + |a|.$$

Show that A_1 is a Banach algebra with the above norm. Does the algebra A_1 possess a unit? If so, what is it? If A is a C*-algebra, is A_1 again a C*-algebra?

- **3**. Let $x, y \in B(\mathcal{H})$ be self-adjoint. We say $x \geq y$ if x y is positive semi-definite. This gives us a partial order on the collection of self-adjoint operators on $B(\mathcal{H})$. Show the following for $x \in B(\mathcal{H})$.
 - (a) $x, y \ge 0 \Rightarrow x + y \ge 0$.
 - (b) $x \ge y$, $z = z^* \Rightarrow x + z \ge y + z$.
 - (c) $x, y \ge 0 \Rightarrow xy \ge 0$.
 - (d) $x = x^* \Rightarrow x^2 \ge 0$.
- 4. Fill in the following table. (Group exercise.) Note that some cells can have more than one correct answer.

	Algebraic Definition	Spatial Definition
Normal	$TT^* = T^*T$	
Self-Adjoint	$T = T^*$	
Projection	$T = T^2 = T^*$	T is an orthogonal projection onto a closed subspace of H
Invertible		
Unitary	$T^*T = I = TT^*$	
Isometry		$ T\xi = \xi $ for all $\xi \in \mathcal{H}$
Co-Isometry	$TT^* = I$	
Partial Isometry	$T = TT^*T$	For some closed subspace $\mathcal{K} \subset \mathcal{H}$, $T _{\mathcal{K}}$ is an isometry and $T _{\mathcal{K}^{\perp}} \equiv 0$

- **5**. By Corollary 8.11 of the prerequisite notes, $FR(\mathcal{H})$ is a two-sided *-ideal in $B(\mathcal{H})$. Show that it is not a norm-closed ideal.
- **6.** Let $S \in B(\ell^2(\mathbb{N}))$ be the shift operator

$$S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$$
$$(a_1, a_2, \dots) \mapsto (0, a_1, a_2, \dots)$$

- (a) What is S^* ?
- (b) What are the source and range projections?
- (c) Show S is an isometry, $S^*S = 1$, but not a unitary $(S^*S = 1 = SS^*)$.
- 7. Let $\{p_n : n \in \mathbb{N}\} \subset B(\mathcal{H})$ be a family of pairwise orthogonal projections.
 - (a) For m < n and $\alpha_m, \alpha_{m+1}, \dots, \alpha_n \in \mathbb{C}$, show that

$$\left\| \sum_{j=m}^{n} \alpha_j p_j \right\| = \max_{m \le j \le n} |\alpha_j|.$$

(b) For $(\alpha_n)_{n\in\mathbb{N}}\in c_0(\mathbb{N})$, show that

$$\left(\sum_{j=1}^{n} \alpha_j p_j\right)_{n \in \mathbb{N}}$$

is a Cauchy sequence (with respect to the metric induced by the operator norm). (What does this allow us to define?)