- **C*.1** Prove that C*-norms are unique. That is, if $\|\cdot\|$ and $\|\cdot\|_1$ are two norms with respect to which A is a C*-algebra, then $\|a\| = \|a\|_1$ for all $a \in A$.
- C*.2 The follow problems are to help you build intuition for $C_0(X)$ where X is locally compact and Hausdorff (or C(X) where X is compact and Hausdorff).
 - (a) What is the C^* -algebra structure on $C_0(X)$ (i.e., what is the norm, addition, multiplication, and involution)? Show $C_0(X)$ is a C^* -algebra. When is $C_0(X)$ unital? What is the unit?
 - (b) What is the spectrum of an element $f \in C(X)$?
 - (c) What are the projections in $C_0(X)$?
- **C*.3** Prove the following proposition: Suppose $\{a_1,...,a_n\} \subset A$ are linearly independent and $\{b_1,...,b_n\} \subset B$. Then

$$\sum_{1}^{n} a_{i} \odot b_{i} = 0 \implies b_{i} = 0, \text{ for all } 1 \leq i \leq n.$$

If $\{e_i\}_{i\in I}$ is a basis for A and $\{e'_i\}_{j\in J}$ is a basis for B, then $\{e_i\odot e'_i\}_{(i,j)\in I\times J}$ is a basis for $A\odot B$.

- **C*.4** For any (not necessarily commutative) C*-algebra A, the Gelfand transform $\Gamma: A \to C(\hat{A})$ is an algebra homomorphism. Moreover, $\|\Gamma(a)\| \leq \|a\|$.
- **W*.1** Show that if a net $(x_i)_{i\in I} \subset B(\mathcal{H})$ converges in operator norm to some $x \in B(\mathcal{H})$, then it converges in the strong operator topology to x. Show that if a net $(x_i)_{i\in I} \subset B(\mathcal{H})$ converges in the strong operator topology to some $x \in B(\mathcal{H})$, then it converges in the weak operator topology to x.
- **W*.2** Consider the shift operator S on $\ell^2(\mathbb{N})$:

$$S(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots).$$

Show that $((S^*)^n)_{n\in\mathbb{N}}$ converges to zero in the SOT, but $(S^n)_{n\in\mathbb{N}}$ does not.

- W*.3 In this exercise you will show that taking adjoints of normal operators is continuous with respect to the strong operator topology.
 - (a) Show that $y \in B(\mathcal{H})$ is normal if and only if $||y\xi|| = ||y^*\xi||$ for all $\xi \in \mathcal{H}$.
 - (b) Suppose $(x_i)_{i\in I} \subset B(\mathcal{H})$ is a net of normal operators converging to a normal operator $x \in B(\mathcal{H})$ in the strong operator topology. Show that $(x_i^*)_{i\in I}$ converges to x^* in the strong operator topology. [Note: you may want to show that taking adjoints is continuous with respect to the weak operator topology.]

Pre-Req.0 (Warning! This problem is a bit long.)

Show that $FR(\mathcal{H}) \subset L^1(B(\mathcal{H}))$, $Tr(\theta_{\xi,\eta}) = \langle \xi, \eta \rangle$ and $\|\theta_{\xi,\eta}\|_1 = \|\xi\| \|\eta\|$ for $\xi, \eta \in \mathcal{H}$. [Hint: You should look at the prerequisite notes to get see how every element in $FR(\mathcal{H})$ looks like.]

Related Problems:

- 1. Show that $(x_i)_{i\in I}\subset B(\mathcal{H})$ converges to $x\in B(\mathcal{H})$ in the strong operator topology if and only if $((x-x_i)^*(x-x_i))_{i\in I}$ converges to zero in the weak operator topology.
- 2. Consider the operator $S_n \in B(\ell^2(\mathbb{N}))$ defined by

$$S_n e_j := \begin{cases} e_{j+1} & \text{if } 1 \le j \le n-1 \\ e_1 & \text{if } j = n \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Determine the formula for S_n^* and show that S_n is normal.
- (b) Show that $(S_n)_n$ converges in the strong operator topology to the shift operator S, but $(S_n^*)_n$ does not converge to S^* .
- (c) Reconcile the previous part with Problem W*.3.
- 3. Describe the projections in $C_0(X)$ when X is
 - (a) (0,1]
 - (b) [0,1]
 - (c) $[0, 1/3] \cup [2/3, 1]$
 - (d) $[0, 1/3) \cup (2/3, 1]$
- 4. (a) Show that all ideals in C(X) are of the form

$$\{f \in C(X) : f|_F = 0\}$$

for some closed subset F of X.

- (b) What are the maximal ideals in C(X)?
- 5. If A_1, A_2 are (*)-algebras and $\psi_i: A_i \to B$ (i=1,2) are (*)-homomorphisms, when is $\psi_1 \otimes \psi_2$ a (*)-homomorphism?