Interactions between commutative algebra and graph coloring theory

Akiyoshi Tsuchiya
Toho University

In this talk, we discuss connections between commutative algebra and graph coloring theory. Given a graph, one can define an algebraic object called the stable set ideal. The question of when this ideal is generated by quadratic binomials is linked to the classical graph-theoretical concept of Kempe equivalence. By using this result, we give an algebraic method to examine Kempe equivalence.


View on Youtube

Back to Computational Interactions between Algebra, Combinatorics, and Discrete Geometry