We describe the characterization of pristine and electrified aqueous interfaces with semiconductors and insulators using first principles simulations and discuss how to integrate computational and experimental data to obtain molecular-level models for the prediction of multiple properties. We discuss interfacial vibrational [1] and the electronic properties [2], with focus on disordered carbon electrodes [3] and oxide photoelectrodes [4,5], and electrochemical properties. Finally, we present recent predictions on how to probe aqueous interfaces with quantum sensors [6].
[1] Raman Spectra of Electrified Si-Water Interfaces: First Principles Simulations, Zifan Ye et al. J. Phys. Chem. Lett. 15, 51-68 (2024).
[2] e.g. p-Type BiVO4 for Solar O2 Reduction to H2O2, Daye Seo*, Vrindaa Somjit* et al.J. Am. Chem. Soc. 147, 3261–3273 (2025).
[3] Unlocking Mesoscopic Disorder in Graphitic Carbon with Spectroelectrochemistry, Ry Papadopoulos*, Benjamin Masters*, Arpan Kundu* et al. Angew. Chem. Int. Ed. e202420680 (2025).
[4] Effects of solvation and temperature on the energetics of BiVO4 surfaces with varying composition for solar water splitting, Giacomo Melani et al. ACS Energy Lett. 9, 5166-5171 (2024).
[5] Impact of the Atomic Structure at the BiVO4/TiO2 Interface on the Electronic Properties and Performance of BiVO4/TiO2 Photoanodes, Dae Han Wi*, Kana Ishisone*, Zhaoyi Xi, Zifan Ye, Daye Seo, Jiawei Zhan, Xiao Tong, Mingzhao Liu, Giulia Galli, and Kyoung-Shin Choi, J. Am. Chem. Soc. 147, 34, 30851–30862 (2025).
[6] Probing aqueous interfaces with spin defects, Alfonso Castillo, Gustavo R. Perez-Lemus, Mykyta Onizhuk, and Giulia Galli Submitted (2025). ArXiv:2507.01220.