Jupiter on Earth, or Turbulence of Tropical Cyclones: from Peristrophic to Zonostrophic

Boris Galperin
University of South Florida St. Petersburg
College of Marine Science

Cyclostrophic rotation imprints a distinct signature upon turbulence structure of tropical cyclones. Its intensity is characterized by the radius of maximum wind, Rm, and the azimuthal wind velocity at that radius, Um. The corresponding cyclostrophic Coriolis parameter, 2 Um/Rm, far exceeds its planetary counterpart for all storms and its impact increases with storm intensity. The storm vortex can be thought of as a system undergoing a superposition of planetary and cyclostrophic rotations represented by the effective Coriolis parameter. In the classical Rankine vortex model, the inner region undergoes solid-body rotation, rendering cyclostrophic Coriolis parameter constant. However, data shows that this parameter deviates from a constant value and in the first approximation, it can be represented by a linear term. This term is quantified in terms of a cyclostrophic ß that gives rise to a cyclostrophic ß-effect that sustains vortex Rossby waves. Horizontal turbulence in this system is quantified by one-dimensional, longitudinal and transverse spectra computed along the radial direction. The evolution of turbulence regimes in a system featuring increasing cyclostrophic effects progresses from Kolmogorov to peristrophic to zonostrophic. Terrestrial oceanic and atmospheric turbulence generally belongs in the peristrophic regime. Good qualitative and quantitative agreement between the theoretical and observational spectra estimated using a comprehensive database of tropical cyclone winds collected by reconnaissance airplanes reveals that with increasing storm intensity, the cyclostrophic turbulence of tropical cyclones evolves from purely peristrophic to mixed peristrophic-zonostrophic to predominantly zonostrophic. The latter is analogous to the flow regime harboring zonal jets on fast rotating giant planets featuring a strong planetary ß-effect.


Back to Long Programs