GMNN: Graph Markov Neural Networks

Jian Tang
HEC Montréal

In this talk, I’m going to talk about our paper in this year’s ICML. We studied semi-supervised object classification in relational data, which is a fundamental problem in relational data modeling. The problem has been extensively studied in the literature of both statistical relational learning (e.g. Relational Markov Networks) and graph neural networks (e.g. Graph Convolutional Networks). Statistical relational learning methods can effectively model the dependency of object labels through conditional random fields for collective classification, whereas graph neural networks learn effective object representations for classification through end- to-end training. In this paper, we propose Graph Markov Neural Network (GMNN) that combines the advantages of both worlds. GMNN models the joint distribution of object labels with a conditional random field, which can be effectively trained with the variational EM algorithm. In the E-step, one graph neural network learns effective object representations for approximating the posterior distributions of object labels. In the M-step, another graph neural network is used to model the local label dependency. Experiments on the tasks of object classification, link classification, and un- supervised node representation learning show that GMNN achieves state-of-the-art results.

Presentation (PDF File)

Back to Workshop IV: Deep Geometric Learning of Big Data and Applications