Certifiable Perception for Robots and Autonomous Vehicles: From Robust Algorithms to Robust Systems

Luca Carlone
Massachusetts Institute of Technology

Spatial perception —the robot’s ability to sense and understand the surrounding environment— is a key enabler for autonomous systems operating in complex environments, including self-driving cars and unmanned aerial vehicles. Recent advances in perception algorithms and systems have enabled robots to detect objects and create large-scale maps of an unknown environment, which are crucial capabilities for navigation, manipulation, and human-robot interaction. Despite these advances, researchers and practitioners are well aware of the brittleness of existing perception systems, and a large gap still separates robot and human perception.

This talk discusses two efforts targeted at bridging this gap. The first focuses on robustness. I present recent advances in the design of certifiable perception algorithms that are robust to extreme amounts of noise and outliers and afford performance guarantees. I present fast certifiable algorithms for object pose estimation: our algorithms are “hard to break” (e.g., are robust to 99% outliers) and succeed in localizing objects where an average human would fail. Moreover, they come with a “contract” that guarantees their input-output performance. The second effort targets high-level understanding. While humans are able to quickly grasp both geometric, semantic, and physical aspects of a scene, high-level scene understanding remains a challenge for robotics. I present our work on real-time metric-semantic understanding and 3D Dynamic Scene Graphs. I introduce the first generation of Spatial Perception Engines, that extend the traditional notions of mapping and SLAM, and allow a robot to build a “mental model” of the environment, including spatial concepts (e.g., humans, objects, rooms, buildings) and their relations at multiple levels of abstraction.

Certifiable algorithms and real-time high-level understanding are key enablers for the next generation of autonomous systems, that are trustworthy, understand and execute high-level human instructions, and operate in large dynamic environments and over and extended period of time.

Presentation (PDF File)

Back to Workshop II: Safe Operation of Connected and Autonomous Vehicle Fleets