A Chinese remainder theorem and Carlson's theorem for monoidal triangulated categories

Kent Vashaw
Massachusetts Institute of Technology

Carlson's connectedness theorem for cohomological support varieties is a fundamental result which states that the support variety for an indecomposable module of a finite group is connected. In this talk, we will discuss a generalization, where it is proved that the Balmer support for an arbitrary monoidal triangulated category satisfies the analogous property. This is shown by proving a version of the Chinese remainder theorem in this context, that is, giving a decomposition for a Verdier quotient of a monoidal triangulated category by an intersection of coprime thick tensor ideals.

Presentation (PDF File)

Back to Symmetric Tensor Categories and Representation Theory