Low rank symmetric fusion categories in positive characteristic

Agustina Czenky
University of Oregon

In this talk, we look at the classification problem for symmetric fusion categories in positive characteristic. We recall the second Adams operation on the Grothendieck ring and use its properties to obtain some classification results. In particular, we show that the Adams operation is not the identity for any non-trivial symmetric fusion category. We also give lower bounds for the rank of a (non-super-Tannakian) symmetric fusion category in terms of the characteristic of the field. As an application of these results, we classify all symmetric fusion categories of rank 3 and those of rank 4 with exactly two self-dual simple objects.

Presentation (PDF File)

Back to Symmetric Tensor Categories and Representation Theory