Summer School: Mathematics in Brain Imaging

July 14 - 25, 2008


This two-week intensive workshop will focus on mathematical techniques applied to brain images to measure, map and model brain structure and function. Topics will range from modeling anatomical structures in MRI scans, and mapping connectivity in diffusion tensor images, to statistical analysis of functional brain images from fMRI and other imaging modalities. Current applications in radiology and neuroscience will be highlighted, as will new directions in the mathematics of structural and functional image analysis. In the second week on Functional Brain Mapping, a series of lectures on diffusion tensor imaging will discuss mathematics and tools for registration, segmentation, fiber tracking and connectivity modeling in tensor and “beyond-tensor” (high-angular resolution) diffusion images, using metrics on Riemannian manifolds. Software implementing a wide range of algorithms will be demonstrated; tutorial notes will be provided. Talks will interest newcomers as well as experts in the field. Morning lectures on the principles behind the methods; afternoon lectures will go in-depth into applications.

Organizing Committee

Michael Miller (Johns Hopkins University, Center for Imaging Science)
Thomas Nichols (University of Oxford, GlaxoSmithKline Clinical Imaging Centre )
Russell Poldrack (University of California, Los Angeles (UCLA), Psychology)
Jonathan Taylor (Stanford University, Statistics)
Paul Thompson (University of California, Los Angeles (UCLA), Laboratory of NeuroImaging)
Keith Worsley (University of Chicago, Department of Mathematics and Statistics)