(with Yi Ma) Lecture II: Data Modeling and Applications

Lecture II: Data Modeling and Applications

This session discusses several extensions of the basic sparse representation concept, from the original l-1 minimization formulation to group sparsity, Sparse PCA, Robust PCA, and compressive phase retrieval. These variations extend the applications of compressive sensing to multiple-view objection recognition, informative feature selection, and medical imaging. Efficient numerical algorithms are a focus of our discussion, which are responsible for recovering stable estimates of the sparse signals in high-dimensional space. Finally, we briefly discuss how to properly implement the sparsity minimization algorithms on modern many-core CPU/GPU environments. Joint talk by Yi Ma and John Wright.

Presentation (PDF File)

Back to Long Programs