Combinatorial and Computational Geometry: Tutorials

March 11 - 14, 2014

Schedule

All times in this Schedule are Pacific Time (PT)

Tuesday, March 11, 2014

Morning Session

8:00 - 9:00 Check-In/Light Breakfast (Hosted by IPAM)
9:00 - 10:15
Imre Barany (Renyi Institute of Mathematics)

(1) The Combinatorial Nullstellensatz

10:15 - 10:45 Break
10:45 - 12:00
12:00 - 12:30 Core Orientation with IPAM Staff
12:30 - 2:00 Lunch (on your own)

Afternoon Session

2:00 - 3:15
3:15 - 3:45 Break
3:45 - 5:00

Wednesday, March 12, 2014

Morning Session

8:00 - 9:00 Check-In/Breakfast (Hosted by IPAM)
9:00 - 10:15
Imre Barany (Renyi Institute of Mathematics)

(2) The Combinatorial Nullstellensatz

10:15 - 10:45 Break
10:45 - 12:00
 
12:00 - 2:00 Lunch (on your own)

Afternoon Session

2:00 - 3:15
3:15 - 3:45 Break
3:45 - 5:00
Shakhar Smorodinsky (Ben-Gurion University of the Negev)

(1) Introduction to combinatorial geometry via hard Erdős problems
PDF Presentation

 

Thursday, March 13, 2014

Morning Session

8:00 - 9:00 Check-In/Breakfast (Hosted by IPAM)
9:00 - 10:15
Jozsef Solymosi (University of British Columbia)

Combinatorical applications of the Subspace Theorem

10:15 - 10:45 Break
10:45 - 12:00
Ernest Croot (Georgia Institute of Technology)

Almost-periodic convolutions

12:00 - 2:30 On-Campus Excursion
2:30 - 3:30
3:30 - 4:00 Break
4:00 - 5:00
Shakhar Smorodinsky (Ben-Gurion University of the Negev)

(2) Introduction to combinatorial geometry via hard Erdős problems
PDF Presentation

 

Friday, March 14, 2014

Morning Session

8:00 - 9:00 Check-In/Breakfast (Hosted by IPAM)
9:00 - 10:15
Jozsef Solymosi (University of British Columbia)

Elementary Additive Combinatorics

10:15 - 10:45 Break
10:45 - 12:00
Shachar Lovett (University of California, San Diego (UCSD))

Applications of additive combinatorics in theoretical computer science
PDF Presentation

 
12:00 - 2:00 Lunch (on your own)

Afternoon Session

2:00 - 3:15
3:15 - 3:45 Break
3:45 - 5:00
Shakhar Smorodinsky (Ben-Gurion University of the Negev)

(3) Introduction to combinatorial geometry via hard Erdős problems
PDF Presentation