Workshop IV: Using Physical Insights for Machine Learning

November 18 - 22, 2019

Overview

In this workshop we will explore how to use physical intuition and ideas to design new classes of machine learning (ML) algorithms. Physics-inspired sampling algorithms could be used to train ML structures or sample the hyper-parameter space (e.g. deep Neural Networks). Additionally, physics-based models such as Ising/Potts models or energy-based models have influenced ML inference frameworks such as Markov Random Fields and Restricted Boltzmann Machines, and we want to continue the discussion to facilitate this innovation transfer. Finally, physical insight could be used to enhance learning in the situation of scarce data by enforcing smoothness, differentiability or other physical properties relevant to a given problem. We will also explore the use of Koopmans’ theorem to design learning algorithms for dynamical systems. Finally, we will discuss and try to promote theories from physics and mathematics that can help us understand and systematize the deep learning framework.

Organizing Committee

Yann LeCun (Facebook, Canadian Institute for Advanced Research)
Matthias Rupp (Fritz-Haber-Institut der Max-Planck-Gesellschaft)
Lenka Zdeborova (Commissariat à l'Énergie Atomique (CEA))
Riccardo Zecchina (Bocconi University)